Properties

Label 40T315842
Order \(815915283247897734345611269596115894272000000000\)
n \(40\)
Cyclic No
Abelian No
Solvable No
Primitive Yes
$p$-group No
Group: $S_{40}$

Related objects

Learn more about

Group action invariants

Degree $n$ :  $40$
Transitive number $t$ :  $315842$
Group :  $S_{40}$
Parity:  $-1$
Primitive:  Yes
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40), (1,2)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$

Resolvents shown for degrees $\leq 10$

Subfields

Degree 2: None

Degree 4: None

Degree 5: None

Degree 8: None

Degree 10: None

Degree 20: None

Low degree siblings

There are no siblings with degree $\leq 10$
Data on whether or not a number field with this Galois group has arithmetically equivalent fields has not been computed.

Conjugacy Classes

There are 37,338 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $815915283247897734345611269596115894272000000000=2^{38} \cdot 3^{18} \cdot 5^{9} \cdot 7^{5} \cdot 11^{3} \cdot 13^{3} \cdot 17^{2} \cdot 19^{2} \cdot 23 \cdot 29 \cdot 31 \cdot 37$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.