Show commands: Magma
Group invariants
Abstract group: | $D_4:D_5$ |
| |
Order: | $80=2^{4} \cdot 5$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $40$ |
| |
Transitive number $t$: | $21$ |
| |
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $20$ |
| |
Generators: | $(1,31,20,7,36,24,12,37,27,16,2,32,19,8,35,23,11,38,28,15)(3,29,17,5,34,22,9,39,25,13,4,30,18,6,33,21,10,40,26,14)$, $(1,15,27,37,11,23,36,7,19,32)(2,16,28,38,12,24,35,8,20,31)(3,14,25,39,10,21,34,5,18,30)(4,13,26,40,9,22,33,6,17,29)$, $(1,30,2,29)(3,31,4,32)(5,28,6,27)(7,25,8,26)(9,23,10,24)(11,21,12,22)(13,19,14,20)(15,18,16,17)(33,37,34,38)(35,40,36,39)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $8$: $C_2^3$ $10$: $D_{5}$ $16$: $Q_8:C_2$ $20$: $D_{10}$ x 3 $40$: 20T8 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$
Degree 5: $D_{5}$
Degree 8: $Q_8:C_2$
Degree 10: $D_5$, $D_{10}$ x 2
Degree 20: 20T4
Low degree siblings
40T21, 40T35Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{40}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{20}$ | $1$ | $2$ | $20$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)(39,40)$ |
2B | $2^{10},1^{20}$ | $2$ | $2$ | $10$ | $( 1, 2)( 3, 4)( 9,10)(11,12)(17,18)(19,20)(25,26)(27,28)(33,34)(35,36)$ |
2C | $2^{20}$ | $2$ | $2$ | $20$ | $( 1,24)( 2,23)( 3,22)( 4,21)( 5,26)( 6,25)( 7,28)( 8,27)( 9,30)(10,29)(11,31)(12,32)(13,34)(14,33)(15,35)(16,36)(17,39)(18,40)(19,38)(20,37)$ |
2D | $2^{20}$ | $10$ | $2$ | $20$ | $( 1,22)( 2,21)( 3,23)( 4,24)( 5,20)( 6,19)( 7,18)( 8,17)( 9,16)(10,15)(11,13)(12,14)(25,37)(26,38)(27,40)(28,39)(29,36)(30,35)(31,33)(32,34)$ |
4A | $4^{10}$ | $2$ | $4$ | $30$ | $( 1,24, 2,23)( 3,22, 4,21)( 5,25, 6,26)( 7,27, 8,28)( 9,30,10,29)(11,31,12,32)(13,33,14,34)(15,36,16,35)(17,39,18,40)(19,38,20,37)$ |
4B1 | $4^{10}$ | $5$ | $4$ | $30$ | $( 1, 9, 2,10)( 3,11, 4,12)( 5, 7, 6, 8)(13,38,14,37)(15,40,16,39)(17,35,18,36)(19,33,20,34)(21,32,22,31)(23,29,24,30)(25,27,26,28)$ |
4B-1 | $4^{10}$ | $5$ | $4$ | $30$ | $( 1,10, 2, 9)( 3,12, 4,11)( 5, 8, 6, 7)(13,37,14,38)(15,39,16,40)(17,36,18,35)(19,34,20,33)(21,31,22,32)(23,30,24,29)(25,28,26,27)$ |
4C | $4^{10}$ | $10$ | $4$ | $30$ | $( 1,13, 2,14)( 3,15, 4,16)( 5,11, 6,12)( 7, 9, 8,10)(17,38,18,37)(19,40,20,39)(21,36,22,35)(23,33,24,34)(25,32,26,31)(27,29,28,30)$ |
4D | $4^{10}$ | $10$ | $4$ | $30$ | $( 1,18, 2,17)( 3,20, 4,19)( 5,15, 6,16)( 7,13, 8,14)( 9,11,10,12)(21,37,22,38)(23,40,24,39)(25,35,26,36)(27,34,28,33)(29,31,30,32)$ |
5A1 | $5^{8}$ | $2$ | $5$ | $32$ | $( 1,36,27,19,11)( 2,35,28,20,12)( 3,34,25,18,10)( 4,33,26,17, 9)( 5,39,30,21,14)( 6,40,29,22,13)( 7,37,32,23,15)( 8,38,31,24,16)$ |
5A2 | $5^{8}$ | $2$ | $5$ | $32$ | $( 1,27,11,36,19)( 2,28,12,35,20)( 3,25,10,34,18)( 4,26, 9,33,17)( 5,30,14,39,21)( 6,29,13,40,22)( 7,32,15,37,23)( 8,31,16,38,24)$ |
10A1 | $10^{4}$ | $2$ | $10$ | $36$ | $( 1,35,27,20,11, 2,36,28,19,12)( 3,33,25,17,10, 4,34,26,18, 9)( 5,40,30,22,14, 6,39,29,21,13)( 7,38,32,24,15, 8,37,31,23,16)$ |
10A3 | $10^{4}$ | $2$ | $10$ | $36$ | $( 1,20,36,12,27, 2,19,35,11,28)( 3,17,34, 9,25, 4,18,33,10,26)( 5,22,39,13,30, 6,21,40,14,29)( 7,24,37,16,32, 8,23,38,15,31)$ |
10B1 | $10^{2},5^{4}$ | $4$ | $10$ | $34$ | $( 1,20,36,12,27, 2,19,35,11,28)( 3,17,34, 9,25, 4,18,33,10,26)( 5,21,39,14,30)( 6,22,40,13,29)( 7,23,37,15,32)( 8,24,38,16,31)$ |
10B3 | $10^{2},5^{4}$ | $4$ | $10$ | $34$ | $( 1,12,19,28,36, 2,11,20,27,35)( 3, 9,18,26,34, 4,10,17,25,33)( 5,14,21,30,39)( 6,13,22,29,40)( 7,15,23,32,37)( 8,16,24,31,38)$ |
10C1 | $10^{4}$ | $4$ | $10$ | $36$ | $( 1,16,27,38,11,24,36, 8,19,31)( 2,15,28,37,12,23,35, 7,20,32)( 3,13,25,40,10,22,34, 6,18,29)( 4,14,26,39, 9,21,33, 5,17,30)$ |
10C3 | $10^{4}$ | $4$ | $10$ | $36$ | $( 1, 8,11,16,19,24,27,31,36,38)( 2, 7,12,15,20,23,28,32,35,37)( 3, 6,10,13,18,22,25,29,34,40)( 4, 5, 9,14,17,21,26,30,33,39)$ |
20A1 | $20^{2}$ | $4$ | $20$ | $38$ | $( 1,38,35,32,27,24,20,15,11, 8, 2,37,36,31,28,23,19,16,12, 7)( 3,40,33,30,25,22,17,14,10, 6, 4,39,34,29,26,21,18,13, 9, 5)$ |
20A3 | $20^{2}$ | $4$ | $20$ | $38$ | $( 1,31,20, 7,36,24,12,37,27,16, 2,32,19, 8,35,23,11,38,28,15)( 3,29,17, 5,34,22, 9,39,25,13, 4,30,18, 6,33,21,10,40,26,14)$ |
Malle's constant $a(G)$: $1/10$
Character table
1A | 2A | 2B | 2C | 2D | 4A | 4B1 | 4B-1 | 4C | 4D | 5A1 | 5A2 | 10A1 | 10A3 | 10B1 | 10B3 | 10C1 | 10C3 | 20A1 | 20A3 | ||
Size | 1 | 1 | 2 | 2 | 10 | 2 | 5 | 5 | 10 | 10 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | |
2 P | 1A | 1A | 1A | 1A | 1A | 2A | 2A | 2A | 2A | 2A | 5A2 | 5A1 | 5A2 | 5A1 | 5A1 | 5A2 | 5A2 | 5A1 | 10A1 | 10A3 | |
5 P | 1A | 2A | 2B | 2C | 2D | 4A | 4B1 | 4B-1 | 4C | 4D | 1A | 1A | 2A | 2A | 2B | 2B | 2C | 2C | 4A | 4A | |
Type | |||||||||||||||||||||
80.40.1a | R | ||||||||||||||||||||
80.40.1b | R | ||||||||||||||||||||
80.40.1c | R | ||||||||||||||||||||
80.40.1d | R | ||||||||||||||||||||
80.40.1e | R | ||||||||||||||||||||
80.40.1f | R | ||||||||||||||||||||
80.40.1g | R | ||||||||||||||||||||
80.40.1h | R | ||||||||||||||||||||
80.40.2a1 | R | ||||||||||||||||||||
80.40.2a2 | R | ||||||||||||||||||||
80.40.2b1 | C | ||||||||||||||||||||
80.40.2b2 | C | ||||||||||||||||||||
80.40.2c1 | R | ||||||||||||||||||||
80.40.2c2 | R | ||||||||||||||||||||
80.40.2d1 | R | ||||||||||||||||||||
80.40.2d2 | R | ||||||||||||||||||||
80.40.2e1 | R | ||||||||||||||||||||
80.40.2e2 | R | ||||||||||||||||||||
80.40.4a1 | S | ||||||||||||||||||||
80.40.4a2 | S |
Regular extensions
Data not computed