Group action invariants
| Degree $n$ : | $40$ | |
| Transitive number $t$ : | $14345$ | |
| Group : | $\PSp(4,3)$ | |
| Parity: | $1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,2,4,7,10)(3,6,12,21,20)(5,9,16,27,38)(8,14,24,32,34)(11,19,23,31,17)(13,22,30,40,37)(15,25,28,18,29)(26,33,39,36,35), (1,3,4,7,12)(2,5,10,18,22)(6,9,16,27,38)(8,15,26,36,37)(11,20,30,40,34)(13,23,19,29,17)(14,25,28,21,31)(24,33,39,32,35) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
NoneResolvents shown for degrees $\leq 10$
Subfields
Degree 2: None
Degree 4: None
Degree 5: None
Degree 8: None
Degree 10: None
Degree 20: None
Low degree siblings
There are no siblings with degree $\leq 10$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 5, 5, 5, 5, 5, 5, 5, 5 $ | $5184$ | $5$ | $( 1,28,16,36,12)( 2, 5,27, 6,11)( 3,39,19,29,40)( 4,22,21, 9, 8) ( 7,24,14,17,13)(10,32,31,37,26)(15,20,33,18,23)(25,34,38,35,30)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $270$ | $2$ | $( 1,21)( 2,18)( 3,30)( 4,17)( 5,38)( 6,15)( 7,36)( 8, 9)(10,16)(11,40)(12,13) (14,28)(20,35)(23,25)(24,31)(26,37)(27,39)(29,34)$ |
| $ 4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 1, 1 $ | $3240$ | $4$ | $( 1,40,21,11)( 2,29,18,34)( 3,16,30,10)( 4,31,17,24)( 5,14,38,28)( 6,25,15,23) ( 7, 8,36, 9)(12,37,13,26)(19,33)(20,39,35,27)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1 $ | $40$ | $3$ | $( 1,11,31)( 2,15, 9)( 3,16,24)( 4,19,13)( 5,21,20)( 7,29,23)(10,38,37) (12,32,27)(14,26,40)(17,39,33)(25,36,34)(28,30,35)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1 $ | $40$ | $3$ | $( 1,31,11)( 2, 9,15)( 3,24,16)( 4,13,19)( 5,20,21)( 7,23,29)(10,37,38) (12,27,32)(14,40,26)(17,33,39)(25,34,36)(28,35,30)$ |
| $ 9, 9, 9, 9, 3, 1 $ | $2880$ | $9$ | $( 1,20,15,11, 5, 9,31,21, 2)( 3,30,23,16,35, 7,24,28,29)( 4,26,38,19,40,37,13, 14,10)( 6, 8,22)(12,17,25,32,39,36,27,33,34)$ |
| $ 9, 9, 9, 9, 3, 1 $ | $2880$ | $9$ | $( 1,15, 5,31, 2,20,11, 9,21)( 3,23,35,24,29,30,16, 7,28)( 4,38,40,13,10,26,19, 37,14)( 6,22, 8)(12,25,39,27,34,17,32,36,33)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $45$ | $2$ | $( 1,32)( 2, 7)( 5,39)( 9,23)(10,14)(11,27)(12,31)(15,29)(17,20)(21,33)(26,38) (37,40)$ |
| $ 4, 4, 4, 4, 4, 4, 2, 2, 2, 2, 2, 2, 2, 2 $ | $540$ | $4$ | $( 1,10,32,14)( 2,33, 7,21)( 3, 6)( 4,19)( 5,37,39,40)( 8,28)( 9,31,23,12) (11,17,27,20)(13,18)(15,26,29,38)(16,24)(22,34)(25,36)(30,35)$ |
| $ 6, 6, 6, 6, 3, 3, 3, 3, 1, 1, 1, 1 $ | $360$ | $6$ | $( 1,37,17,32,40,20)( 2,23,15, 7, 9,29)( 3,13,28)( 4,30,16)( 5,11,10,39,27,14) ( 6,18, 8)(12,26,21,31,38,33)(19,35,24)$ |
| $ 6, 6, 6, 6, 3, 3, 3, 3, 1, 1, 1, 1 $ | $360$ | $6$ | $( 1,20,40,32,17,37)( 2,29, 9, 7,15,23)( 3,28,13)( 4,16,30)( 5,14,27,39,10,11) ( 6, 8,18)(12,33,38,31,21,26)(19,24,35)$ |
| $ 12, 12, 6, 6, 2, 2 $ | $2160$ | $12$ | $( 1,11,37,10,17,39,32,27,40,14,20, 5)( 2,38,23,33,15,12, 7,26, 9,21,29,31) ( 3, 8,13, 6,28,18)( 4,24,30,19,16,35)(22,34)(25,36)$ |
| $ 12, 12, 6, 6, 2, 2 $ | $2160$ | $12$ | $( 1,39,20,10,40,11,32, 5,17,14,37,27)( 2,12,29,33, 9,38, 7,31,15,21,23,26) ( 3,18,28, 6,13, 8)( 4,35,16,19,30,24)(22,34)(25,36)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1 $ | $240$ | $3$ | $( 1,34, 2)( 3,16, 6)( 4,32,14)( 5,31,28)( 7, 8,10)( 9,25,12)(11,13,26) (15,40,21)(17,38,22)(18,23,39)(19,35,36)(20,30,27)(29,33,37)$ |
| $ 6, 6, 6, 6, 3, 3, 3, 3, 3, 1 $ | $720$ | $6$ | $( 1, 2,34)( 3,29,16,33, 6,37)( 4,27,32,20,14,30)( 5,26,31,11,28,13) ( 7,39, 8,18,10,23)( 9,12,25)(15,21,40)(17,22,38)(19,36,35)$ |
| $ 6, 6, 6, 6, 3, 3, 3, 3, 3, 1 $ | $720$ | $6$ | $( 1,34, 2)( 3,37, 6,33,16,29)( 4,30,14,20,32,27)( 5,13,28,11,31,26) ( 7,23,10,18, 8,39)( 9,25,12)(15,40,21)(17,38,22)(19,35,36)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1 $ | $480$ | $3$ | $( 1,28,26)( 2,31,13)( 3,16, 6)( 4,12,20)( 5,11,34)( 7,18,17)( 8,23,38) ( 9,30,32)(10,39,22)(14,25,27)(29,37,33)$ |
| $ 6, 6, 6, 6, 6, 6, 3, 1 $ | $2160$ | $6$ | $( 1,17,39,16,30,35)( 2,14,24,31,23,13)( 3,15,26,29,19,11)( 4,28, 9,40,33, 7) ( 5,12,36, 6,10,32)( 8,38,25)(18,37,20,21,34,22)$ |
| $ 6, 6, 6, 3, 3, 3, 3, 3, 2, 2, 2, 1 $ | $1440$ | $6$ | $( 1,33, 2,32,21, 7)( 3,18,30)( 4,28, 6)( 5,39)( 8,16,13)( 9,37,12,23,40,31) (10,14)(11,27)(15,20,38,29,17,26)(19,35,24)(22,25,34)$ |
Group invariants
| Order: | $25920=2^{6} \cdot 3^{4} \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | Data not available |
| Character table: |
2 6 . 6 2 2 2 3 3 3 3 4 5 2 1 1 2 2 3 . .
3 4 . 2 3 2 2 4 4 2 2 1 1 1 3 2 1 1 . 2 2
5 1 1 . . . . . . . . . . . . . . . . . .
1a 5a 2a 3a 6a 6b 3b 3c 6c 6d 4a 2b 6e 3d 6f 12a 12b 4b 9a 9b
2P 1a 5a 1a 3a 3a 3a 3c 3b 3b 3c 2a 1a 3a 3d 3d 6c 6d 2b 9b 9a
3P 1a 5a 2a 1a 2a 2a 1a 1a 2a 2a 4a 2b 2b 1a 2a 4a 4a 4b 3c 3b
5P 1a 1a 2a 3a 6b 6a 3c 3b 6d 6c 4a 2b 6e 3d 6f 12b 12a 4b 9b 9a
7P 1a 5a 2a 3a 6a 6b 3b 3c 6c 6d 4a 2b 6e 3d 6f 12a 12b 4b 9a 9b
11P 1a 5a 2a 3a 6b 6a 3c 3b 6d 6c 4a 2b 6e 3d 6f 12b 12a 4b 9b 9a
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 5 . -3 -1 A -A C /C H /H 1 1 1 2 . J /J -1 -/J -J
X.3 5 . -3 -1 -A A /C C /H H 1 1 1 2 . /J J -1 -J -/J
X.4 6 1 -2 3 1 1 -3 -3 1 1 2 2 -1 . -2 -1 -1 . . .
X.5 10 . 2 1 -1 -1 D /D /C C 2 -2 1 1 -1 -J -/J . J /J
X.6 10 . 2 1 -1 -1 /D D C /C 2 -2 1 1 -1 -/J -J . /J J
X.7 15 . 7 . -2 -2 -3 -3 1 1 -1 3 . 3 1 -1 -1 1 . .
X.8 15 . -1 3 -1 -1 6 6 2 2 3 -1 -1 . 2 . . -1 . .
X.9 20 . 4 5 1 1 2 2 -2 -2 . 4 1 -1 1 . . . -1 -1
X.10 24 -1 8 . 2 2 6 6 2 2 . . . 3 -1 . . . . .
X.11 30 . -10 3 -1 -1 3 3 -1 -1 -2 2 -1 3 -1 1 1 . . .
X.12 30 . 6 -3 -A A E /E /H H 2 2 -1 . . -/J -J . . .
X.13 30 . 6 -3 A -A /E E H /H 2 2 -1 . . -J -/J . . .
X.14 40 . -8 -2 B /B F /F B /B . . . 1 1 . . . /J J
X.15 40 . -8 -2 /B B /F F /B B . . . 1 1 . . . J /J
X.16 45 . -3 . . . G /G I /I 1 -3 . . . /J J 1 . .
X.17 45 . -3 . . . /G G /I I 1 -3 . . . J /J 1 . .
X.18 60 . -4 -3 -1 -1 6 6 2 2 . 4 1 -3 -1 . . . . .
X.19 64 -1 . 4 . . -8 -8 . . . . . -2 . . . . 1 1
X.20 81 1 9 . . . . . . . -3 -3 . . . . . -1 . .
A = -E(3)+E(3)^2
= -Sqrt(-3) = -i3
B = -2*E(3)
= 1-Sqrt(-3) = 1-i3
C = E(3)-2*E(3)^2
= (1+3*Sqrt(-3))/2 = 2+3b3
D = 5*E(3)+2*E(3)^2
= (-7+3*Sqrt(-3))/2 = -2+3b3
E = 6*E(3)-3*E(3)^2
= (-3+9*Sqrt(-3))/2 = 3+9b3
F = 8*E(3)+2*E(3)^2
= -5+3*Sqrt(-3) = -5+3i3
G = -9*E(3)^2
= (9+9*Sqrt(-3))/2 = 9+9b3
H = 2*E(3)+E(3)^2
= (-3+Sqrt(-3))/2 = -1+b3
I = 3*E(3)
= (-3+3*Sqrt(-3))/2 = 3b3
J = E(3)
= (-1+Sqrt(-3))/2 = b3
|