Show commands: Magma
Group invariants
Abstract group: | $\PSp(4,3)$ |
| |
Order: | $25920=2^{6} \cdot 3^{4} \cdot 5$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | no |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $40$ |
| |
Transitive number $t$: | $14345$ |
| |
Parity: | $1$ |
| |
Primitive: | yes |
| |
$\card{\Aut(F/K)}$: | $1$ |
| |
Generators: | $(1,2,4,7,10)(3,6,12,21,20)(5,9,16,27,38)(8,14,24,32,34)(11,19,23,31,17)(13,22,30,40,37)(15,25,28,18,29)(26,33,39,36,35)$, $(1,3,4,7,12)(2,5,10,18,22)(6,9,16,27,38)(8,15,26,36,37)(11,20,30,40,34)(13,23,19,29,17)(14,25,28,21,31)(24,33,39,32,35)$ |
|
Low degree resolvents
noneResolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 4: None
Degree 5: None
Degree 8: None
Degree 10: None
Degree 20: None
Low degree siblings
27T993, 36T12781, 40T14344, 45T666Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{40}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{12},1^{16}$ | $45$ | $2$ | $12$ | $( 1,28)( 2,31)( 3,29)( 5,34)( 6,37)( 7,17)( 8,38)( 9,30)(10,22)(12,20)(16,33)(25,27)$ |
2B | $2^{18},1^{4}$ | $270$ | $2$ | $18$ | $( 1,34)( 2,27)( 3,35)( 4,37)( 5,12)( 6,26)( 7,15)( 8,14)( 9,28)(10,19)(11,33)(13,38)(16,32)(17,36)(20,30)(21,29)(22,40)(23,24)$ |
3A1 | $3^{12},1^{4}$ | $40$ | $3$ | $24$ | $( 1,31,11)( 2, 9,15)( 3,24,16)( 4,13,19)( 5,20,21)( 7,23,29)(10,37,38)(12,27,32)(14,40,26)(17,33,39)(25,34,36)(28,35,30)$ |
3A-1 | $3^{12},1^{4}$ | $40$ | $3$ | $24$ | $( 1,11,31)( 2,15, 9)( 3,16,24)( 4,19,13)( 5,21,20)( 7,29,23)(10,38,37)(12,32,27)(14,26,40)(17,39,33)(25,36,34)(28,30,35)$ |
3B | $3^{13},1$ | $240$ | $3$ | $26$ | $( 1,12,15)( 2,40,38)( 3, 8, 4)( 5,27,10)( 6,30,13)( 7,37,26)( 9,17,21)(11,14,39)(16,28,18)(19,24,35)(20,33,23)(22,25,34)(29,32,31)$ |
3C | $3^{11},1^{7}$ | $480$ | $3$ | $22$ | $( 1,10,33)( 3, 8,25)( 4,13,18)( 5,37, 9)( 6,30,34)(11,15,26)(14,21,32)(16,28,22)(23,39,40)(24,35,36)(27,29,38)$ |
4A | $4^{6},2^{8}$ | $540$ | $4$ | $26$ | $( 1,35)( 2,37)( 3,39,27,21)( 4,34,14, 7)( 5,24,17,32)( 6, 8)( 9,38)(10,15)(11,28)(12,20,16,33)(13,36,40,23)(18,22)(19,25,26,29)(30,31)$ |
4B | $4^{9},2,1^{2}$ | $3240$ | $4$ | $28$ | $( 1,20,34,30)( 2,24,27,23)( 3,28,35, 9)( 4,17,37,36)( 5,21,12,29)( 6, 7,26,15)( 8,38,14,13)(10,11,19,33)(16,40,32,22)(18,39)$ |
5A | $5^{8}$ | $5184$ | $5$ | $32$ | $( 1, 9,33,34,13)( 2, 8,36,32,40)( 3,29,38, 4,31)( 5,35,27,26,28)( 6,14,37,21,19)( 7,16,30,10,23)(11,20,24,12,18)(15,17,22,39,25)$ |
6A1 | $6^{4},3^{4},1^{4}$ | $360$ | $6$ | $28$ | $( 1,11,31)( 2,15, 9)( 3,12,24,27,16,32)( 4,26,13,14,19,40)( 5,39,20,17,21,33)( 7,25,23,34,29,36)(10,38,37)(28,30,35)$ |
6A-1 | $6^{4},3^{4},1^{4}$ | $360$ | $6$ | $28$ | $( 1,31,11)( 2, 9,15)( 3,32,16,27,24,12)( 4,40,19,14,13,26)( 5,33,21,17,20,39)( 7,36,29,34,23,25)(10,37,38)(28,35,30)$ |
6B1 | $6^{4},3^{5},1$ | $720$ | $6$ | $30$ | $( 1,21,19)( 2, 9,15)( 3,10,37,33,39,16)( 4,13, 5,20,31,11)( 6,23,18,29, 8, 7)(12,35,40)(14,30,28,27,32,26)(17,38,24)(25,34,36)$ |
6B-1 | $6^{4},3^{5},1$ | $720$ | $6$ | $30$ | $( 1,19,21)( 2,15, 9)( 3,16,39,33,37,10)( 4,11,31,20, 5,13)( 6, 7, 8,29,18,23)(12,40,35)(14,26,32,27,28,30)(17,24,38)(25,36,34)$ |
6C | $6^{3},3^{5},2^{3},1$ | $1440$ | $6$ | $28$ | $( 1,16,10,28,33,22)( 2,31)( 3,27, 8,29,25,38)( 4,18,13)( 5,30,37,34, 9, 6)( 7,17)(11,26,15)(12,20)(14,32,21)(23,40,39)(24,36,35)$ |
6D | $6^{6},3,1$ | $2160$ | $6$ | $32$ | $( 1, 6,12,30,15,13)( 2, 4,40, 3,38, 8)( 5,11,27,14,10,39)( 7,20,37,33,26,23)( 9,18,17,16,21,28)(19,25,24,34,35,22)(29,31,32)$ |
9A1 | $9^{4},3,1$ | $2880$ | $9$ | $34$ | $( 1,33,13,31,39,19,11,17, 4)( 2,23,25, 9,29,34,15, 7,36)( 3,30,38,24,28,10,16,35,37)( 5,26,32,20,14,12,21,40,27)( 6, 8,18)$ |
9A-1 | $9^{4},3,1$ | $2880$ | $9$ | $34$ | $( 1, 4,17,11,19,39,31,13,33)( 2,36, 7,15,34,29, 9,25,23)( 3,37,35,16,10,28,24,38,30)( 5,27,40,21,12,14,20,32,26)( 6,18, 8)$ |
12A1 | $12^{2},6^{2},2^{2}$ | $2160$ | $12$ | $34$ | $( 1,30,11,35,31,28)( 2,38,15,37, 9,10)( 3, 5,12,39,24,20,27,17,16,21,32,33)( 4,23,26,34,13,29,14,36,19, 7,40,25)( 6, 8)(18,22)$ |
12A-1 | $12^{2},6^{2},2^{2}$ | $2160$ | $12$ | $34$ | $( 1,28,31,35,11,30)( 2,10, 9,37,15,38)( 3,33,32,21,16,17,27,20,24,39,12, 5)( 4,25,40, 7,19,36,14,29,13,34,26,23)( 6, 8)(18,22)$ |
Malle's constant $a(G)$: $1/12$
Character table
1A | 2A | 2B | 3A1 | 3A-1 | 3B | 3C | 4A | 4B | 5A | 6A1 | 6A-1 | 6B1 | 6B-1 | 6C | 6D | 9A1 | 9A-1 | 12A1 | 12A-1 | ||
Size | 1 | 45 | 270 | 40 | 40 | 240 | 480 | 540 | 3240 | 5184 | 360 | 360 | 720 | 720 | 1440 | 2160 | 2880 | 2880 | 2160 | 2160 | |
2 P | 1A | 1A | 1A | 3A-1 | 3A1 | 3B | 3C | 2A | 2B | 5A | 3A1 | 3A-1 | 3B | 3B | 3C | 3B | 9A-1 | 9A1 | 6A1 | 6A-1 | |
3 P | 1A | 2A | 2B | 1A | 1A | 1A | 1A | 4A | 4B | 5A | 2A | 2A | 2A | 2A | 2A | 2B | 3A1 | 3A-1 | 4A | 4A | |
5 P | 1A | 2A | 2B | 3A-1 | 3A1 | 3B | 3C | 4A | 4B | 1A | 6A-1 | 6A1 | 6B-1 | 6B1 | 6C | 6D | 9A-1 | 9A1 | 12A-1 | 12A1 | |
Type | |||||||||||||||||||||
25920.a.1a | R | ||||||||||||||||||||
25920.a.5a1 | C | ||||||||||||||||||||
25920.a.5a2 | C | ||||||||||||||||||||
25920.a.6a | R | ||||||||||||||||||||
25920.a.10a1 | C | ||||||||||||||||||||
25920.a.10a2 | C | ||||||||||||||||||||
25920.a.15a | R | ||||||||||||||||||||
25920.a.15b | R | ||||||||||||||||||||
25920.a.20a | R | ||||||||||||||||||||
25920.a.24a | R | ||||||||||||||||||||
25920.a.30a | R | ||||||||||||||||||||
25920.a.30b1 | C | ||||||||||||||||||||
25920.a.30b2 | C | ||||||||||||||||||||
25920.a.40a1 | C | ||||||||||||||||||||
25920.a.40a2 | C | ||||||||||||||||||||
25920.a.45a1 | C | ||||||||||||||||||||
25920.a.45a2 | C | ||||||||||||||||||||
25920.a.60a | R | ||||||||||||||||||||
25920.a.64a | R | ||||||||||||||||||||
25920.a.81a | R |
Regular extensions
Data not computed