Group action invariants
| Degree $n$ : | $40$ | |
| Transitive number $t$ : | $14$ | |
| Group : | $C_2\times F_5$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,21,3,23)(2,22,4,24)(5,11,40,33)(6,12,39,34)(7,10,37,36)(8,9,38,35)(13,25,29,20)(14,26,30,19)(15,28,31,18)(16,27,32,17), (1,30,33,8)(2,29,34,7)(3,31,36,6)(4,32,35,5)(9,13,28,23)(10,14,27,24)(11,15,25,22)(12,16,26,21)(17,39,20,38)(18,40,19,37) | |
| $|\Aut(F/K)|$: | $40$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_4$ x 2, $C_2^2$ 8: $C_4\times C_2$ 20: $F_5$ Resolvents shown for degrees $\leq 10$
Subfields
Degree 2: $C_2$ x 3
Degree 5: $F_5$
Degree 8: $C_4\times C_2$
Degree 10: $F_5$, $F_{5}\times C_2$ x 2
Low degree siblings
10T5 x 2Siblings are shown with degree $\leq 10$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22) (23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)(39,40)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $5$ | $2$ | $( 1, 3)( 2, 4)( 5,40)( 6,39)( 7,37)( 8,38)( 9,35)(10,36)(11,33)(12,34)(13,29) (14,30)(15,31)(16,32)(17,27)(18,28)(19,26)(20,25)(21,23)(22,24)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $5$ | $2$ | $( 1, 4)( 2, 3)( 5,39)( 6,40)( 7,38)( 8,37)( 9,36)(10,35)(11,34)(12,33)(13,30) (14,29)(15,32)(16,31)(17,28)(18,27)(19,25)(20,26)(21,24)(22,23)$ |
| $ 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 $ | $5$ | $4$ | $( 1, 5,17,13)( 2, 6,18,14)( 3, 7,20,16)( 4, 8,19,15)( 9,31,12,30)(10,32,11,29) (21,27,37,33)(22,28,38,34)(23,25,40,36)(24,26,39,35)$ |
| $ 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 $ | $5$ | $4$ | $( 1, 6,17,14)( 2, 5,18,13)( 3, 8,20,15)( 4, 7,19,16)( 9,32,12,29)(10,31,11,30) (21,28,37,34)(22,27,38,33)(23,26,40,35)(24,25,39,36)$ |
| $ 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 $ | $5$ | $4$ | $( 1, 7,33,29)( 2, 8,34,30)( 3, 5,36,32)( 4, 6,35,31)( 9,24,28,14)(10,23,27,13) (11,21,25,16)(12,22,26,15)(17,37,20,40)(18,38,19,39)$ |
| $ 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 $ | $5$ | $4$ | $( 1, 8,33,30)( 2, 7,34,29)( 3, 6,36,31)( 4, 5,35,32)( 9,23,28,13)(10,24,27,14) (11,22,25,15)(12,21,26,16)(17,38,20,39)(18,37,19,40)$ |
| $ 5, 5, 5, 5, 5, 5, 5, 5 $ | $4$ | $5$ | $( 1,11,20,27,36)( 2,12,19,28,35)( 3,10,17,25,33)( 4, 9,18,26,34) ( 5,16,23,29,37)( 6,15,24,30,38)( 7,13,21,32,40)( 8,14,22,31,39)$ |
| $ 10, 10, 10, 10 $ | $4$ | $10$ | $( 1,12,20,28,36, 2,11,19,27,35)( 3, 9,17,26,33, 4,10,18,25,34)( 5,15,23,30,37, 6,16,24,29,38)( 7,14,21,31,40, 8,13,22,32,39)$ |
Group invariants
| Order: | $40=2^{3} \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [40, 12] |
| Character table: |
2 3 3 3 3 3 3 3 3 1 1
5 1 1 . . . . . . 1 1
1a 2a 2b 2c 4a 4b 4c 4d 5a 10a
2P 1a 1a 1a 1a 2b 2b 2b 2b 5a 5a
3P 1a 2a 2b 2c 4c 4d 4a 4b 5a 10a
5P 1a 2a 2b 2c 4a 4b 4c 4d 1a 2a
7P 1a 2a 2b 2c 4c 4d 4a 4b 5a 10a
X.1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 -1 -1 1 -1 1 1 -1
X.3 1 -1 1 -1 1 -1 1 -1 1 -1
X.4 1 1 1 1 -1 -1 -1 -1 1 1
X.5 1 -1 -1 1 A -A -A A 1 -1
X.6 1 -1 -1 1 -A A A -A 1 -1
X.7 1 1 -1 -1 A A -A -A 1 1
X.8 1 1 -1 -1 -A -A A A 1 1
X.9 4 -4 . . . . . . -1 1
X.10 4 4 . . . . . . -1 -1
A = -E(4)
= -Sqrt(-1) = -i
|