Group action invariants
| Degree $n$ : | $40$ | |
| Transitive number $t$ : | $12$ | |
| Group : | $D_{20}$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,15,28,38,11,24,36,7,20,32,2,16,27,37,12,23,35,8,19,31)(3,13,26,40,9,22,33,6,17,29,4,14,25,39,10,21,34,5,18,30), (1,26)(2,25)(3,28)(4,27)(5,24)(6,23)(7,21)(8,22)(9,19)(10,20)(11,18)(12,17)(13,15)(14,16)(29,37)(30,38)(31,40)(32,39)(33,35)(34,36) | |
| $|\Aut(F/K)|$: | $40$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 8: $D_{4}$ 10: $D_{5}$ 20: $D_{10}$ Resolvents shown for degrees $\leq 10$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$, $D_{4}$ x 2
Degree 5: $D_{5}$
Degree 8: $D_4$
Low degree siblings
There are no siblings with degree $\leq 10$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22) (23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)(39,40)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $10$ | $2$ | $( 1, 3)( 2, 4)( 5,38)( 6,37)( 7,39)( 8,40)( 9,35)(10,36)(11,34)(12,33)(13,31) (14,32)(15,30)(16,29)(17,27)(18,28)(19,26)(20,25)(21,24)(22,23)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $10$ | $2$ | $( 1, 5)( 2, 6)( 3, 8)( 4, 7)( 9,37)(10,38)(11,39)(12,40)(13,35)(14,36)(15,34) (16,33)(17,32)(18,31)(19,30)(20,29)(21,28)(22,27)(23,26)(24,25)$ |
| $ 20, 20 $ | $2$ | $20$ | $( 1, 7,12,15,20,23,28,32,35,38, 2, 8,11,16,19,24,27,31,36,37)( 3, 6,10,13,17, 21,26,29,34,40, 4, 5, 9,14,18,22,25,30,33,39)$ |
| $ 20, 20 $ | $2$ | $20$ | $( 1, 8,12,16,20,24,28,31,35,37, 2, 7,11,15,19,23,27,32,36,38)( 3, 5,10,14,17, 22,26,30,34,39, 4, 6, 9,13,18,21,25,29,33,40)$ |
| $ 5, 5, 5, 5, 5, 5, 5, 5 $ | $2$ | $5$ | $( 1,11,20,27,35)( 2,12,19,28,36)( 3, 9,17,25,34)( 4,10,18,26,33) ( 5,13,22,29,39)( 6,14,21,30,40)( 7,16,23,31,38)( 8,15,24,32,37)$ |
| $ 10, 10, 10, 10 $ | $2$ | $10$ | $( 1,12,20,28,35, 2,11,19,27,36)( 3,10,17,26,34, 4, 9,18,25,33)( 5,14,22,30,39, 6,13,21,29,40)( 7,15,23,32,38, 8,16,24,31,37)$ |
| $ 20, 20 $ | $2$ | $20$ | $( 1,15,28,38,11,24,36, 7,20,32, 2,16,27,37,12,23,35, 8,19,31)( 3,13,26,40, 9, 22,33, 6,17,29, 4,14,25,39,10,21,34, 5,18,30)$ |
| $ 20, 20 $ | $2$ | $20$ | $( 1,16,28,37,11,23,36, 8,20,31, 2,15,27,38,12,24,35, 7,19,32)( 3,14,26,39, 9, 21,33, 5,17,30, 4,13,25,40,10,22,34, 6,18,29)$ |
| $ 10, 10, 10, 10 $ | $2$ | $10$ | $( 1,19,35,12,27, 2,20,36,11,28)( 3,18,34,10,25, 4,17,33, 9,26)( 5,21,39,14,29, 6,22,40,13,30)( 7,24,38,15,31, 8,23,37,16,32)$ |
| $ 5, 5, 5, 5, 5, 5, 5, 5 $ | $2$ | $5$ | $( 1,20,35,11,27)( 2,19,36,12,28)( 3,17,34, 9,25)( 4,18,33,10,26) ( 5,22,39,13,29)( 6,21,40,14,30)( 7,23,38,16,31)( 8,24,37,15,32)$ |
| $ 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 $ | $2$ | $4$ | $( 1,23, 2,24)( 3,21, 4,22)( 5,25, 6,26)( 7,28, 8,27)( 9,30,10,29)(11,31,12,32) (13,34,14,33)(15,35,16,36)(17,40,18,39)(19,37,20,38)$ |
Group invariants
| Order: | $40=2^{3} \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [40, 6] |
| Character table: |
2 3 3 2 2 2 2 2 2 2 2 2 2 2
5 1 1 . . 1 1 1 1 1 1 1 1 1
1a 2a 2b 2c 20a 20b 5a 10a 20c 20d 10b 5b 4a
2P 1a 1a 1a 1a 10a 10a 5b 5b 10b 10b 5a 5a 2a
3P 1a 2a 2b 2c 20c 20d 5b 10b 20b 20a 10a 5a 4a
5P 1a 2a 2b 2c 4a 4a 1a 2a 4a 4a 2a 1a 4a
7P 1a 2a 2b 2c 20d 20c 5b 10b 20a 20b 10a 5a 4a
11P 1a 2a 2b 2c 20b 20a 5a 10a 20d 20c 10b 5b 4a
13P 1a 2a 2b 2c 20d 20c 5b 10b 20a 20b 10a 5a 4a
17P 1a 2a 2b 2c 20c 20d 5b 10b 20b 20a 10a 5a 4a
19P 1a 2a 2b 2c 20a 20b 5a 10a 20c 20d 10b 5b 4a
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 -1 -1 1 1 1 1 1 1 1 1 1
X.3 1 1 -1 1 -1 -1 1 1 -1 -1 1 1 -1
X.4 1 1 1 -1 -1 -1 1 1 -1 -1 1 1 -1
X.5 2 -2 . . . . 2 -2 . . -2 2 .
X.6 2 -2 . . A -A -*C *C -B B C -C .
X.7 2 -2 . . B -B -C C A -A *C -*C .
X.8 2 -2 . . -B B -C C -A A *C -*C .
X.9 2 -2 . . -A A -*C *C B -B C -C .
X.10 2 2 . . C C -*C -*C *C *C -C -C -2
X.11 2 2 . . *C *C -C -C C C -*C -*C -2
X.12 2 2 . . -*C -*C -C -C -C -C -*C -*C 2
X.13 2 2 . . -C -C -*C -*C -*C -*C -C -C 2
A = -E(20)+E(20)^9
B = -E(20)^13+E(20)^17
C = -E(5)-E(5)^4
= (1-Sqrt(5))/2 = -b5
|