Properties

Label 40T105788
Order \(204800\)
n \(40\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Learn more about

Group action invariants

Degree $n$ :  $40$
Transitive number $t$ :  $105788$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,6,20,23,34,38,12,15,28,31)(2,5,19,24,33,37,11,16,27,32)(3,7,18,22,36,40,9,14,25,30,4,8,17,21,35,39,10,13,26,29), (1,29)(2,30)(3,32,4,31)(5,25,15,17,6,26,16,18)(7,28,13,19,8,27,14,20)(9,37,35,23)(10,38,36,24)(11,39,34,22)(12,40,33,21)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_4$ x 2, $C_2^2$
8:  $D_{4}$ x 2, $C_4\times C_2$
16:  $C_2^2:C_4$
32:  $C_2^3 : C_4 $
200:  $D_5^2 : C_2$

Resolvents shown for degrees $\leq 10$

Subfields

Degree 2: $C_2$ x 3

Degree 4: $C_2^2$

Degree 5: None

Degree 8: None

Degree 10: $D_5^2 : C_2$

Degree 20: 20T50

Low degree siblings

There are no siblings with degree $\leq 10$
Data on whether or not a number field with this Galois group has arithmetically equivalent fields has not been computed.

Conjugacy Classes

There are 164 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $204800=2^{13} \cdot 5^{2}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.