Properties

Label 3T1
3T1 1 2 1->2 3 2->3 3->1
Degree $3$
Order $3$
Cyclic yes
Abelian yes
Solvable yes
Primitive yes
$p$-group yes
Group: $C_3$

Related objects

Downloads

Learn more

Show commands: Magma

Copy content magma:G := TransitiveGroup(3, 1);
 

Group invariants

Abstract group:  $C_3$
Copy content magma:IdentifyGroup(G);
 
Order:  $3$ (is prime)
Copy content magma:Order(G);
 
Cyclic:  yes
Copy content magma:IsCyclic(G);
 
Abelian:  yes
Copy content magma:IsAbelian(G);
 
Solvable:  yes
Copy content magma:IsSolvable(G);
 
Nilpotency class:  $1$
Copy content magma:NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $3$
Copy content magma:t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $1$
Copy content magma:t, n := TransitiveGroupIdentification(G); t;
 
CHM label:   $A3$
Parity:  $1$
Copy content magma:IsEven(G);
 
Primitive:  yes
Copy content magma:IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $3$
Copy content magma:Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(1,2,3)$
Copy content magma:Generators(G);
 

Low degree resolvents

none

Resolvents shown for degrees $\leq 47$

Subfields

Prime degree - none

Low degree siblings

There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{3}$ $1$ $1$ $0$ $()$
3A1 $3$ $1$ $3$ $2$ $(1,2,3)$
3A-1 $3$ $1$ $3$ $2$ $(1,3,2)$

Malle's constant $a(G)$:     $1/2$

Copy content magma:ConjugacyClasses(G);
 

Character table

1A 3A1 3A-1
Size 1 1 1
3 P 1A 3A-1 3A1
Type
3.1.1a R 1 1 1
3.1.1b1 C 1 ζ31 ζ3
3.1.1b2 C 1 ζ3 ζ31

Copy content magma:CharacterTable(G);
 

Indecomposable integral representations

Complete list of indecomposable integral representations:

Name Dim $(1,2,3) \mapsto $
Triv $1$ $\left(\begin{array}{r}1\end{array}\right)$
$J$ $2$ $\left(\begin{array}{rr}0 & 1\\-1 & -1\end{array}\right)$
$R$ $3$ $\left(\begin{array}{rrr}0 & 1 & 0\\0 & 0 & 1\\1 & 0 & 0\end{array}\right)$
The decomposition of an arbitrary integral representation as a direct sum of indecomposables is unique.

Regular extensions

$f_{ 1 } =$ $x^{3}-t x^{2}+\left(t-3\right) x+1$ Copy content Toggle raw display
The polynomial $f_{1}$ is generic for any base field $K$