Show commands:
Magma
magma: G := TransitiveGroup(3, 1);
Group action invariants
Degree $n$: | $3$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $1$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $C_3$ | ||
CHM label: | $A3$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | yes | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $3$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,2,3) | magma: Generators(G);
|
Low degree resolvents
noneResolvents shown for degrees $\leq 47$
Subfields
Prime degree - none
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{3}$ | $1$ | $1$ | $0$ | $()$ |
3A1 | $3$ | $1$ | $3$ | $2$ | $(1,2,3)$ |
3A-1 | $3$ | $1$ | $3$ | $2$ | $(1,3,2)$ |
magma: ConjugacyClasses(G);
Malle's constant $a(G)$: $1/2$
Group invariants
Order: | $3$ (is prime) | magma: Order(G);
| |
Cyclic: | yes | magma: IsCyclic(G);
| |
Abelian: | yes | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | $1$ | ||
Label: | 3.1 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 3A1 | 3A-1 | ||
Size | 1 | 1 | 1 | |
3 P | 1A | 3A-1 | 3A1 | |
Type | ||||
3.1.1a | R | |||
3.1.1b1 | C | |||
3.1.1b2 | C |
magma: CharacterTable(G);
Indecomposable integral representations
Complete
list of indecomposable integral representations:
|