None
Resolvents shown for degrees $\leq 47$
Prime degree - none
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1 $ |
$1$ |
$1$ |
$()$ |
| $ 3 $ |
$1$ |
$3$ |
$(1,2,3)$ |
| $ 3 $ |
$1$ |
$3$ |
$(1,3,2)$ |
| Character table:
| |
3 1 1 1
1a 3a 3b
X.1 1 1 1
X.2 1 A /A
X.3 1 /A A
A = E(3)
= (-1+Sqrt(-3))/2 = b3
|
|
Complete
list of indecomposable integral representations:
| Name | Dim |
$(1,2,3) \mapsto $ |
| Triv | $1$ |
$\left(\begin{array}{r}1\end{array}\right)$ |
| $J$ | $2$ |
$\left(\begin{array}{rr}0 & 1\\-1 & -1\end{array}\right)$ |
| $R$ | $3$ |
$\left(\begin{array}{rrr}0 & 1 & 0\\0 & 0 & 1\\1 & 0 & 0\end{array}\right)$ |
|
The decomposition of an arbitrary integral representation as a direct
sum of indecomposables is unique.