Group action invariants
| Degree $n$ : | $39$ | |
| Transitive number $t$ : | $6$ | |
| Group : | $D_{13}:C_3$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,6,34,22,21,28)(2,4,35,23,19,29)(3,5,36,24,20,30)(7,27,11,18,37,14)(8,25,12,16,38,15)(9,26,10,17,39,13)(31,32,33), (1,30,26,35,9,12)(2,28,27,36,7,10)(3,29,25,34,8,11)(4,20,14,33,16,23)(5,21,15,31,17,24)(6,19,13,32,18,22)(37,38,39) | |
| $|\Aut(F/K)|$: | $3$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 3: $C_3$ 6: $C_6$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $C_3$
Degree 13: $C_{13}:C_6$
Low degree siblings
13T5, 26T6Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1 $ | $13$ | $2$ | $( 4,39)( 5,37)( 6,38)( 7,34)( 8,35)( 9,36)(10,31)(11,32)(12,33)(13,29)(14,30) (15,28)(16,27)(17,25)(18,26)(19,24)(20,22)(21,23)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $13$ | $3$ | $( 1, 2, 3)( 4,10,30)( 5,11,28)( 6,12,29)( 7,20,17)( 8,21,18)( 9,19,16) (13,38,33)(14,39,31)(15,37,32)(22,25,34)(23,26,35)(24,27,36)$ |
| $ 6, 6, 6, 6, 6, 6, 3 $ | $13$ | $6$ | $( 1, 2, 3)( 4,31,30,39,10,14)( 5,32,28,37,11,15)( 6,33,29,38,12,13) ( 7,22,17,34,20,25)( 8,23,18,35,21,26)( 9,24,16,36,19,27)$ |
| $ 6, 6, 6, 6, 6, 6, 3 $ | $13$ | $6$ | $( 1, 3, 2)( 4,14,10,39,30,31)( 5,15,11,37,28,32)( 6,13,12,38,29,33) ( 7,25,20,34,17,22)( 8,26,21,35,18,23)( 9,27,19,36,16,24)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $13$ | $3$ | $( 1, 3, 2)( 4,30,10)( 5,28,11)( 6,29,12)( 7,17,20)( 8,18,21)( 9,16,19) (13,33,38)(14,31,39)(15,32,37)(22,34,25)(23,35,26)(24,36,27)$ |
| $ 13, 13, 13 $ | $6$ | $13$ | $( 1, 5, 8,10,13,16,20,22,27,29,31,35,37)( 2, 6, 9,11,14,17,21,23,25,30,32,36, 38)( 3, 4, 7,12,15,18,19,24,26,28,33,34,39)$ |
| $ 13, 13, 13 $ | $6$ | $13$ | $( 1, 8,13,20,27,31,37, 5,10,16,22,29,35)( 2, 9,14,21,25,32,38, 6,11,17,23,30, 36)( 3, 7,15,19,26,33,39, 4,12,18,24,28,34)$ |
Group invariants
| Order: | $78=2 \cdot 3 \cdot 13$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [78, 1] |
| Character table: |
2 1 1 1 1 1 1 . .
3 1 1 1 1 1 1 . .
13 1 . . . . . 1 1
1a 2a 3a 6a 6b 3b 13a 13b
2P 1a 1a 3b 3b 3a 3a 13b 13a
3P 1a 2a 1a 2a 2a 1a 13a 13b
5P 1a 2a 3b 6b 6a 3a 13b 13a
7P 1a 2a 3a 6a 6b 3b 13b 13a
11P 1a 2a 3b 6b 6a 3a 13b 13a
13P 1a 2a 3a 6a 6b 3b 1a 1a
X.1 1 1 1 1 1 1 1 1
X.2 1 -1 1 -1 -1 1 1 1
X.3 1 -1 A -A -/A /A 1 1
X.4 1 -1 /A -/A -A A 1 1
X.5 1 1 A A /A /A 1 1
X.6 1 1 /A /A A A 1 1
X.7 6 . . . . . B *B
X.8 6 . . . . . *B B
A = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
B = E(13)^2+E(13)^5+E(13)^6+E(13)^7+E(13)^8+E(13)^11
= (-1-Sqrt(13))/2 = -1-b13
|