Label 39T48
Degree $39$
Order $6591$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group no

Learn more about

Group action invariants

Degree $n$:  $39$
Transitive number $t$:  $48$
Parity:  $1$
Primitive:  no
Nilpotency class:  $-1$ (not nilpotent)
$|\Aut(F/K)|$:  $13$
Generators:  (1,27,22,2,30,20,12,39,24,5,28,19,6,34,25,9,37,23,10,35,16,4,36,18,3,33,21,11,31,15,13,29,14,7,32,26,8,38,17), (1,36,19,2,33,25,12,31,23,5,29,16,6,32,18,9,38,21,10,27,15,4,30,14,3,39,26,11,28,17,13,34,22,7,37,20,8,35,24)

Low degree resolvents

|G/N|Galois groups for stem field(s)
$3$:  $C_3$
$13$:  $C_{13}$
$39$:  $C_{13}:C_3$ x 2, $C_{39}$
$507$:  39T20, 39T21 x 2

Resolvents shown for degrees $\leq 47$


Degree 3: $C_3$

Degree 13: None

Low degree siblings

39T48 x 47

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

There are 767 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $6591=3 \cdot 13^{3}$
Cyclic:  no
Abelian:  no
Solvable:  yes
GAP id:  not available
Character table: not available.