Group action invariants
| Degree $n$ : | $39$ | |
| Transitive number $t$ : | $29$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,15,26,38,10,23,34,9,20,31,6,18,30)(2,13,27,39,11,24,35,7,21,32,4,16,28)(3,14,25,37,12,22,36,8,19,33,5,17,29), (1,3,2)(4,10,28,5,11,29,6,12,30)(7,20,18,8,21,16,9,19,17)(13,38,31,15,37,33,14,39,32)(22,25,35)(23,26,36)(24,27,34) | |
| $|\Aut(F/K)|$: | $3$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 3: $C_3$ 39: $C_{13}:C_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: None
Degree 13: $C_{13}:C_3$
Low degree siblings
27T292, 39T30 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $13$ | $3$ | $( 4, 6, 5)(10,11,12)(13,14,15)(16,17,18)(19,21,20)(22,23,24)(25,26,27) (34,35,36)(37,39,38)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $13$ | $3$ | $( 4, 5, 6)(10,12,11)(13,15,14)(16,18,17)(19,20,21)(22,24,23)(25,27,26) (34,36,35)(37,38,39)$ |
| $ 13, 13, 13 $ | $81$ | $13$ | $( 1,15,26,38,10,23,34, 9,20,31, 6,18,30)( 2,13,27,39,11,24,35, 7,21,32, 4,16, 28)( 3,14,25,37,12,22,36, 8,19,33, 5,17,29)$ |
| $ 13, 13, 13 $ | $81$ | $13$ | $( 1,26,10,34,20, 6,30,15,38,23, 9,31,18)( 2,27,11,35,21, 4,28,13,39,24, 7,32, 16)( 3,25,12,36,19, 5,29,14,37,22, 8,33,17)$ |
| $ 13, 13, 13 $ | $81$ | $13$ | $( 1,10,20,30,38, 9,18,26,34, 6,15,23,31)( 2,11,21,28,39, 7,16,27,35, 4,13,24, 32)( 3,12,19,29,37, 8,17,25,36, 5,14,22,33)$ |
| $ 13, 13, 13 $ | $81$ | $13$ | $( 1,20,38,18,34,15,31,10,30, 9,26, 6,23)( 2,21,39,16,35,13,32,11,28, 7,27, 4, 24)( 3,19,37,17,36,14,33,12,29, 8,25, 5,22)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1 $ | $117$ | $3$ | $( 1,35,16)( 2,36,17)( 3,34,18)( 7,14,32)( 8,15,33)( 9,13,31)(10,23,21) (11,24,19)(12,22,20)(25,28,38)(26,29,39)(27,30,37)$ |
| $ 9, 9, 9, 3, 3, 3, 3 $ | $117$ | $9$ | $( 1,36,18, 3,35,17, 2,34,16)( 4, 6, 5)( 7,15,33, 8,13,31, 9,14,32) (10,24,21,11,22,19,12,23,20)(25,28,37)(26,29,38)(27,30,39)$ |
| $ 9, 9, 9, 3, 3, 3, 3 $ | $117$ | $9$ | $( 1,34,17, 2,35,18, 3,36,16)( 4, 5, 6)( 7,13,31, 9,15,33, 8,14,32) (10,22,21,12,24,20,11,23,19)(25,28,39)(26,29,37)(27,30,38)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1 $ | $117$ | $3$ | $( 1,16,35)( 2,17,36)( 3,18,34)( 7,32,14)( 8,33,15)( 9,31,13)(10,21,23) (11,19,24)(12,20,22)(25,38,28)(26,39,29)(27,37,30)$ |
| $ 9, 9, 9, 3, 3, 3, 3 $ | $117$ | $9$ | $( 1,17,34, 3,16,36, 2,18,35)( 4, 6, 5)( 7,32,15, 8,33,13, 9,31,14) (10,20,23,11,21,24,12,19,22)(25,37,30)(26,38,28)(27,39,29)$ |
| $ 9, 9, 9, 3, 3, 3, 3 $ | $117$ | $9$ | $( 1,18,36, 2,16,34, 3,17,35)( 4, 5, 6)( 7,32,13, 9,31,15, 8,33,14) (10,19,23,12,21,22,11,20,24)(25,39,29)(26,37,30)(27,38,28)$ |
Group invariants
| Order: | $1053=3^{4} \cdot 13$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [1053, 51] |
| Character table: |
3 4 4 4 . . . . 2 2 2 2 2 2
13 1 . . 1 1 1 1 . . . . . .
1a 3a 3b 13a 13b 13c 13d 3c 9a 9b 3d 9c 9d
2P 1a 3b 3a 13b 13c 13d 13a 3d 9d 9c 3c 9b 9a
3P 1a 1a 1a 13a 13b 13c 13d 1a 3a 3b 1a 3a 3b
5P 1a 3b 3a 13b 13c 13d 13a 3d 9d 9c 3c 9b 9a
7P 1a 3a 3b 13d 13a 13b 13c 3c 9a 9b 3d 9c 9d
11P 1a 3b 3a 13d 13a 13b 13c 3d 9d 9c 3c 9b 9a
13P 1a 3a 3b 1a 1a 1a 1a 3c 9a 9b 3d 9c 9d
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 1 1 1 D D D /D /D /D
X.3 1 1 1 1 1 1 1 /D /D /D D D D
X.4 3 3 3 B C /B /C . . . . . .
X.5 3 3 3 /B /C B C . . . . . .
X.6 3 3 3 C /B /C B . . . . . .
X.7 3 3 3 /C B C /B . . . . . .
X.8 13 A /A . . . . D /D 1 /D 1 D
X.9 13 /A A . . . . /D D 1 D 1 /D
X.10 13 A /A . . . . /D 1 D D /D 1
X.11 13 /A A . . . . D 1 /D /D D 1
X.12 13 A /A . . . . 1 D /D 1 D /D
X.13 13 /A A . . . . 1 /D D 1 /D D
A = 2*E(3)-E(3)^2
= (-1+3*Sqrt(-3))/2 = 1+3b3
B = E(13)^2+E(13)^5+E(13)^6
C = E(13)^4+E(13)^10+E(13)^12
D = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
|