Group action invariants
| Degree $n$ : | $39$ | |
| Transitive number $t$ : | $25$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,8)(2,7)(3,6)(4,5)(9,13)(10,12)(14,15)(16,26)(17,25)(18,24)(19,23)(20,22)(27,37)(28,36)(29,35)(30,34)(31,33)(38,39), (1,28,23,4,29,20)(2,37,22,3,33,21)(5,38,19,13,32,24)(6,34,18,12,36,25)(7,30,17,11,27,26)(8,39,16,10,31,14)(9,35,15) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 3: $C_3$ 6: $C_6$ 26: $D_{13}$ 78: $C_{13}:C_6$, 39T5 Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $C_3$
Degree 13: None
Low degree siblings
39T25 x 3Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
There are 50 conjugacy classes of elements. Data not shown.
Group invariants
| Order: | $1014=2 \cdot 3 \cdot 13^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [1014, 13] |
| Character table: Data not available. |