Properties

Label 38T47
38T47 1 24 1->24 37 1->37 2 29 2->29 31 2->31 3 21 3->21 38 3->38 4 26 4->26 32 4->32 5 5->24 33 5->33 6 6->21 35 6->35 7 27 7->27 28 7->28 8 8->35 8->38 9 23 9->23 30 9->30 10 22 10->22 10->30 11 11->33 11->37 12 25 12->25 12->25 13 13->32 36 13->36 14 20 14->20 14->28 15 15->20 15->27 16 16->31 34 16->34 17 17->22 17->23 18 18->29 18->34 19 19->26 19->36 20->11 20->19 21->1 21->12 22->5 22->10 23->19 24->9 24->10 25->3 25->18 26->8 26->15 27->8 27->17 28->1 29->13 29->16 30->6 30->6 31->15 31->18 32->5 32->11 33->4 33->14 34->4 34->16 35->9 35->13 36->2 36->3 37->12 37->14 38->2 38->7
Degree $38$
Order $233928$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group no
Group: $F_{19}\wr C_2$

Related objects

Downloads

Learn more

Show commands: Magma

Copy content magma:G := TransitiveGroup(38, 47);
 

Group invariants

Abstract group:  $F_{19}\wr C_2$
Copy content magma:IdentifyGroup(G);
 
Order:  $233928=2^{3} \cdot 3^{4} \cdot 19^{2}$
Copy content magma:Order(G);
 
Cyclic:  no
Copy content magma:IsCyclic(G);
 
Abelian:  no
Copy content magma:IsAbelian(G);
 
Solvable:  yes
Copy content magma:IsSolvable(G);
 
Nilpotency class:   not nilpotent
Copy content magma:NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $38$
Copy content magma:t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $47$
Copy content magma:t, n := TransitiveGroupIdentification(G); t;
 
Parity:  $-1$
Copy content magma:IsEven(G);
 
Primitive:  no
Copy content magma:IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $1$
Copy content magma:Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(1,24,9,23,19,36,3,38,2,31,15,27,17,22,10,30,6,21)(4,26,8,35,13,32,5,33,14,20,11,37,12,25,18,29,16,34)(7,28)$, $(1,37,14,28)(2,29,13,36)(3,21,12,25)(4,32,11,33)(5,24,10,22)(6,35,9,30)(7,27,8,38)(15,20,19,26)(16,31,18,34)(17,23)$
Copy content magma:Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$ x 3
$3$:  $C_3$
$4$:  $C_2^2$
$6$:  $S_3$, $C_6$ x 3
$8$:  $D_{4}$
$9$:  $C_9$
$12$:  $D_{6}$, $C_6\times C_2$
$18$:  $S_3\times C_3$, $D_{9}$, $C_{18}$ x 3
$24$:  $(C_6\times C_2):C_2$, $D_4 \times C_3$
$36$:  $C_6\times S_3$, $D_{18}$, 36T2
$54$:  $C_9\times S_3$, 18T19
$72$:  12T42, 36T15, 36T24
$108$:  36T63, 36T69
$162$:  18T74
$216$:  36T181, 36T189
$324$:  36T461
$648$:  36T966

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 19: None

Low degree siblings

There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

Conjugacy classes not computed

Copy content magma:ConjugacyClasses(G);
 

Character table

Character table not computed

Copy content magma:CharacterTable(G);
 

Regular extensions

Data not computed