Show commands: Magma
Group invariants
| Abstract group: | $F_{19}\wr C_2$ |
| |
| Order: | $233928=2^{3} \cdot 3^{4} \cdot 19^{2}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $38$ |
| |
| Transitive number $t$: | $47$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $1$ |
| |
| Generators: | $(1,24,9,23,19,36,3,38,2,31,15,27,17,22,10,30,6,21)(4,26,8,35,13,32,5,33,14,20,11,37,12,25,18,29,16,34)(7,28)$, $(1,37,14,28)(2,29,13,36)(3,21,12,25)(4,32,11,33)(5,24,10,22)(6,35,9,30)(7,27,8,38)(15,20,19,26)(16,31,18,34)(17,23)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $3$: $C_3$ $4$: $C_2^2$ $6$: $S_3$, $C_6$ x 3 $8$: $D_{4}$ $9$: $C_9$ $12$: $D_{6}$, $C_6\times C_2$ $18$: $S_3\times C_3$, $D_{9}$, $C_{18}$ x 3 $24$: $(C_6\times C_2):C_2$, $D_4 \times C_3$ $36$: $C_6\times S_3$, $D_{18}$, 36T2 $54$: $C_9\times S_3$, 18T19 $72$: 12T42, 36T15, 36T24 $108$: 36T63, 36T69 $162$: 18T74 $216$: 36T181, 36T189 $324$: 36T461 $648$: 36T966 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 19: None
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
Character table not computed
Regular extensions
Data not computed