Properties

Label 38T44
38T44 1 27 1->27 29 1->29 2 34 2->34 37 2->37 3 20 3->20 28 3->28 4 25 4->25 38 4->38 5 5->29 30 5->30 6 6->20 35 6->35 7 21 7->21 7->30 8 8->21 26 8->26 9 31 9->31 9->31 10 22 10->22 36 10->36 11 11->22 32 11->32 12 23 12->23 12->27 13 13->32 33 13->33 14 24 14->24 14->37 15 15->23 15->34 16 16->25 16->28 17 17->33 17->35 18 18->26 18->38 19 19->24 19->36 20->10 20->18 21->4 21->11 22->9 22->12 23->13 23->14 24->14 24->19 25->5 25->15 26->10 26->16 27->15 27->17 28->1 28->18 29->6 29->19 30->1 30->11 31->2 31->16 32->2 32->3 33->4 33->7 34->5 34->12 36->3 36->7 37->8 37->8 38->9 38->13
Degree $38$
Order $77976$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group no
Group: $D_{19}^2:(S_3\times C_9)$

Related objects

Downloads

Learn more

Show commands: Magma

Copy content magma:G := TransitiveGroup(38, 44);
 

Group invariants

Abstract group:  $D_{19}^2:(S_3\times C_9)$
Copy content magma:IdentifyGroup(G);
 
Order:  $77976=2^{3} \cdot 3^{3} \cdot 19^{2}$
Copy content magma:Order(G);
 
Cyclic:  no
Copy content magma:IsCyclic(G);
 
Abelian:  no
Copy content magma:IsAbelian(G);
 
Solvable:  yes
Copy content magma:IsSolvable(G);
 
Nilpotency class:   not nilpotent
Copy content magma:NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $38$
Copy content magma:t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $44$
Copy content magma:t, n := TransitiveGroupIdentification(G); t;
 
Parity:  $-1$
Copy content magma:IsEven(G);
 
Primitive:  no
Copy content magma:IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $1$
Copy content magma:Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(1,29,19,24,14,37,8,26,16,28,18,38,9,31,2,34,5,30)(3,20,10,36,7,21,11,22,12,27,17,33,4,25,15,23,13,32)(6,35)$, $(1,27,15,34,12,23,14,24,19,36,3,28)(2,37,8,21,4,38,13,33,7,30,11,32)(5,29,6,20,18,26,10,22,9,31,16,25)(17,35)$
Copy content magma:Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$ x 3
$3$:  $C_3$
$4$:  $C_2^2$
$6$:  $S_3$, $C_6$ x 3
$8$:  $D_{4}$
$9$:  $C_9$
$12$:  $D_{6}$, $C_6\times C_2$
$18$:  $S_3\times C_3$, $C_{18}$ x 3
$24$:  $(C_6\times C_2):C_2$, $D_4 \times C_3$
$36$:  $C_6\times S_3$, 36T2
$54$:  $C_9\times S_3$
$72$:  12T42, 36T15
$108$:  36T63
$216$:  36T181

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 19: None

Low degree siblings

There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

Conjugacy classes not computed

Copy content magma:ConjugacyClasses(G);
 

Character table

90 x 90 character table

Copy content magma:CharacterTable(G);
 

Regular extensions

Data not computed