Label 38T39
Order \(38988\)
n \(38\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Learn more about

Group action invariants

Degree $n$ :  $38$
Transitive number $t$ :  $39$
Parity:  $1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,7,12,13,17,14,2,11,9)(3,15,6,8,16,10,5,4,19)(20,35,37,36,27,22,34,28,31)(21,25,23,24,33,38,26,32,29), (1,24,7,20,2,36,3,29,18,38,15,21,8,32,17,26,19,31,11,30,5,34,10,37,9,25,13,35,16,33,4,22,14,28,12,23)(6,27)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
3:  $C_3$
4:  $C_4$
6:  $S_3$, $C_6$
9:  $C_9$
12:  $C_{12}$, $C_3 : C_4$
18:  $S_3\times C_3$, $C_{18}$
36:  $C_3\times (C_3 : C_4)$, $C_{36}$
54:  $C_9\times S_3$
108:  36T62

Resolvents shown for degrees $\leq 47$


Degree 2: $C_2$

Degree 19: None

Low degree siblings

There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 60 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $38988=2^{2} \cdot 3^{3} \cdot 19^{2}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.