Show commands: Magma
Group invariants
| Abstract group: | $C_{19}^2:(C_3\times D_9)$ |
| |
| Order: | $19494=2 \cdot 3^{3} \cdot 19^{2}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $38$ |
| |
| Transitive number $t$: | $31$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $1$ |
| |
| Generators: | $(1,36,17,28,15,29)(2,26,5,34,7,33)(3,35,12,21,18,37)(4,25,19,27,10,22)(6,24,14,20,13,30)(8,23,9,32,16,38)(11,31)$, $(1,18,5,6,3,12,4,9,13)(2,15,14,17,8,16,11,7,19)(20,21,25,22,29,38,36,28,34)(23,33,35,24,37,32,31,27,30)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $3$: $C_3$ $6$: $S_3$, $C_6$ $18$: $S_3\times C_3$, $D_{9}$ $54$: 18T19 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 19: None
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{38}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{19}$ | $171$ | $2$ | $19$ | $( 1,21)( 2,25)( 3,29)( 4,33)( 5,37)( 6,22)( 7,26)( 8,30)( 9,34)(10,38)(11,23)(12,27)(13,31)(14,35)(15,20)(16,24)(17,28)(18,32)(19,36)$ |
| 3A1 | $3^{6},1^{20}$ | $38$ | $3$ | $12$ | $(20,35,29)(21,27,36)(22,38,24)(23,30,31)(25,33,26)(32,34,37)$ |
| 3A-1 | $3^{6},1^{20}$ | $38$ | $3$ | $12$ | $(20,29,35)(21,36,27)(22,24,38)(23,31,30)(25,26,33)(32,37,34)$ |
| 3B1 | $3^{12},1^{2}$ | $361$ | $3$ | $24$ | $( 1,19, 8)( 2,11,15)( 4,14,10)( 5, 6,17)( 7, 9,12)(13,18,16)(20,26,35)(21,37,23)(22,29,30)(24,32,25)(28,38,34)(31,33,36)$ |
| 3B-1 | $3^{12},1^{2}$ | $361$ | $3$ | $24$ | $( 1, 8,19)( 2,15,11)( 4,10,14)( 5,17, 6)( 7,12, 9)(13,16,18)(20,35,26)(21,23,37)(22,30,29)(24,25,32)(28,34,38)(31,36,33)$ |
| 3C | $3^{12},1^{2}$ | $722$ | $3$ | $24$ | $( 1, 5,11)( 2,16,18)( 3, 8, 6)( 4,19,13)( 7,14,15)( 9,17,10)(20,26,30)(21,33,22)(23,28,25)(24,35,36)(27,37,31)(29,32,34)$ |
| 6A1 | $6^{6},2$ | $3249$ | $6$ | $31$ | $( 1,33,19,36, 8,31)( 2,30,11,22,15,29)( 3,27)( 4,24,14,32,10,25)( 5,21, 6,37,17,23)( 7,34, 9,28,12,38)(13,35,18,20,16,26)$ |
| 6A-1 | $6^{6},2$ | $3249$ | $6$ | $31$ | $( 1,31, 8,36,19,33)( 2,29,15,22,11,30)( 3,27)( 4,25,10,32,14,24)( 5,23,17,37, 6,21)( 7,38,12,28, 9,34)(13,26,16,20,18,35)$ |
| 9A1 | $9^{4},1^{2}$ | $722$ | $9$ | $32$ | $( 1,14, 3, 5,15, 8,11, 7, 6)( 2,19, 9,16,13,17,18, 4,10)(20,23,35,26,28,36,30,25,24)(21,27,32,33,37,34,22,31,29)$ |
| 9A2 | $9^{4},1^{2}$ | $722$ | $9$ | $32$ | $( 1, 3,15,11, 6,14, 5, 8, 7)( 2, 9,13,18,10,19,16,17, 4)(20,35,28,30,24,23,26,36,25)(21,32,37,22,29,27,33,34,31)$ |
| 9A4 | $9^{4},1^{2}$ | $722$ | $9$ | $32$ | $( 1,15, 6, 5, 7, 3,11,14, 8)( 2,13,10,16, 4, 9,18,19,17)(20,28,24,26,25,35,30,23,36)(21,37,29,33,31,32,22,27,34)$ |
| 9B1 | $9^{4},1^{2}$ | $722$ | $9$ | $32$ | $( 1, 7,14,19, 9,10, 8,12, 4)( 2, 5,18,11, 6,16,15,17,13)(20,28,22,36,35,31,34,27,37)(21,32,38,24,25,29,26,33,23)$ |
| 9B-1 | $9^{4},1^{2}$ | $722$ | $9$ | $32$ | $( 1, 4,12, 8,10, 9,19,14, 7)( 2,13,17,15,16, 6,11,18, 5)(20,37,27,34,31,35,36,22,28)(21,23,33,26,29,25,24,38,32)$ |
| 9B2 | $9^{4},1^{2}$ | $722$ | $9$ | $32$ | $( 1,14, 9, 8, 4, 7,19,10,12)( 2,18, 6,15,13, 5,11,16,17)(20,22,35,34,37,28,36,31,27)(21,38,25,26,23,32,24,29,33)$ |
| 9B-2 | $9^{4},1^{2}$ | $722$ | $9$ | $32$ | $( 1,12,10,19, 7, 4, 8, 9,14)( 2,17,16,11, 5,13,15, 6,18)(20,27,31,36,28,37,34,35,22)(21,33,29,24,32,23,26,25,38)$ |
| 9B4 | $9^{4},1^{2}$ | $722$ | $9$ | $32$ | $( 1, 9, 4,19,12,14, 8, 7,10)( 2, 6,13,11,17,18,15, 5,16)(20,35,37,36,27,22,34,28,31)(21,25,23,24,33,38,26,32,29)$ |
| 9B-4 | $9^{4},1^{2}$ | $722$ | $9$ | $32$ | $( 1,10, 7, 8,14,12,19, 4, 9)( 2,16, 5,15,18,17,11,13, 6)(20,31,28,34,22,27,36,37,35)(21,29,32,26,38,33,24,23,25)$ |
| 19A1 | $19,1^{19}$ | $18$ | $19$ | $18$ | $( 1,15,10, 5,19,14, 9, 4,18,13, 8, 3,17,12, 7, 2,16,11, 6)$ |
| 19A-1 | $19,1^{19}$ | $18$ | $19$ | $18$ | $( 1, 6,11,16, 2, 7,12,17, 3, 8,13,18, 4, 9,14,19, 5,10,15)$ |
| 19B1 | $19^{2}$ | $27$ | $19$ | $36$ | $( 1, 8,15, 3,10,17, 5,12,19, 7,14, 2, 9,16, 4,11,18, 6,13)(20,29,38,28,37,27,36,26,35,25,34,24,33,23,32,22,31,21,30)$ |
| 19B-1 | $19^{2}$ | $27$ | $19$ | $36$ | $( 1,13, 6,18,11, 4,16, 9, 2,14, 7,19,12, 5,17,10, 3,15, 8)(20,30,21,31,22,32,23,33,24,34,25,35,26,36,27,37,28,38,29)$ |
| 19B2 | $19^{2}$ | $27$ | $19$ | $36$ | $( 1,15,10, 5,19,14, 9, 4,18,13, 8, 3,17,12, 7, 2,16,11, 6)(20,38,37,36,35,34,33,32,31,30,29,28,27,26,25,24,23,22,21)$ |
| 19B-2 | $19^{2}$ | $27$ | $19$ | $36$ | $( 1, 6,11,16, 2, 7,12,17, 3, 8,13,18, 4, 9,14,19, 5,10,15)(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38)$ |
| 19B4 | $19^{2}$ | $27$ | $19$ | $36$ | $( 1,10,19, 9,18, 8,17, 7,16, 6,15, 5,14, 4,13, 3,12, 2,11)(20,37,35,33,31,29,27,25,23,21,38,36,34,32,30,28,26,24,22)$ |
| 19B-4 | $19^{2}$ | $27$ | $19$ | $36$ | $( 1,11, 2,12, 3,13, 4,14, 5,15, 6,16, 7,17, 8,18, 9,19,10)(20,22,24,26,28,30,32,34,36,38,21,23,25,27,29,31,33,35,37)$ |
| 19C1 | $19^{2}$ | $54$ | $19$ | $36$ | $( 1, 6,11,16, 2, 7,12,17, 3, 8,13,18, 4, 9,14,19, 5,10,15)(20,30,21,31,22,32,23,33,24,34,25,35,26,36,27,37,28,38,29)$ |
| 19C2 | $19^{2}$ | $54$ | $19$ | $36$ | $( 1,11, 2,12, 3,13, 4,14, 5,15, 6,16, 7,17, 8,18, 9,19,10)(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38)$ |
| 19C4 | $19^{2}$ | $54$ | $19$ | $36$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16,17,18,19)(20,22,24,26,28,30,32,34,36,38,21,23,25,27,29,31,33,35,37)$ |
| 38A1 | $38$ | $513$ | $38$ | $37$ | $( 1,35, 8,25,15,34, 3,24,10,33,17,23, 5,32,12,22,19,31, 7,21,14,30, 2,20, 9,29,16,38, 4,28,11,37,18,27, 6,36,13,26)$ |
| 38A-1 | $38$ | $513$ | $38$ | $37$ | $( 1,26,13,36, 6,27,18,37,11,28, 4,38,16,29, 9,20, 2,30,14,21, 7,31,19,22,12,32, 5,23,17,33,10,24, 3,34,15,25, 8,35)$ |
| 38A3 | $38$ | $513$ | $38$ | $37$ | $( 1,25, 3,33, 5,22, 7,30, 9,38,11,27,13,35,15,24,17,32,19,21, 2,29, 4,37, 6,26, 8,34,10,23,12,31,14,20,16,28,18,36)$ |
| 38A-3 | $38$ | $513$ | $38$ | $37$ | $( 1,36,18,28,16,20,14,31,12,23,10,34, 8,26, 6,37, 4,29, 2,21,19,32,17,24,15,35,13,27,11,38, 9,30, 7,22, 5,33, 3,25)$ |
| 38A9 | $38$ | $513$ | $38$ | $37$ | $( 1,33, 7,38,13,24,19,29, 6,34,12,20,18,25, 5,30,11,35,17,21, 4,26,10,31,16,36, 3,22, 9,27,15,32, 2,37, 8,23,14,28)$ |
| 38A-9 | $38$ | $513$ | $38$ | $37$ | $( 1,28,14,23, 8,37, 2,32,15,27, 9,22, 3,36,16,31,10,26, 4,21,17,35,11,30, 5,25,18,20,12,34, 6,29,19,24,13,38, 7,33)$ |
| 57A1 | $19,3^{6},1$ | $342$ | $57$ | $30$ | $( 1,12, 4,15, 7,18,10, 2,13, 5,16, 8,19,11, 3,14, 6,17, 9)(20,35,29)(21,27,36)(22,38,24)(23,30,31)(25,33,26)(32,34,37)$ |
| 57A-1 | $19,3^{6},1$ | $342$ | $57$ | $30$ | $( 1, 9,17, 6,14, 3,11,19, 8,16, 5,13, 2,10,18, 7,15, 4,12)(20,29,35)(21,36,27)(22,24,38)(23,31,30)(25,26,33)(32,37,34)$ |
| 57A5 | $19,3^{6},1$ | $342$ | $57$ | $30$ | $( 1,18,16,14,12,10, 8, 6, 4, 2,19,17,15,13,11, 9, 7, 5, 3)(20,29,35)(21,36,27)(22,24,38)(23,31,30)(25,26,33)(32,37,34)$ |
| 57A-5 | $19,3^{6},1$ | $342$ | $57$ | $30$ | $( 1, 3, 5, 7, 9,11,13,15,17,19, 2, 4, 6, 8,10,12,14,16,18)(20,35,29)(21,27,36)(22,38,24)(23,30,31)(25,33,26)(32,34,37)$ |
Malle's constant $a(G)$: $1/12$
Character table
39 x 39 character table
Regular extensions
Data not computed