Show commands: Magma
Group invariants
| Abstract group: | $D_{38}$ |
| |
| Order: | $76=2^{2} \cdot 19$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $38$ |
| |
| Transitive number $t$: | $3$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $2$ |
| |
| Generators: | $(1,33)(2,34)(3,32)(4,31)(5,29)(6,30)(7,27)(8,28)(9,25)(10,26)(11,23)(12,24)(13,21)(14,22)(15,19)(16,20)(35,38)(36,37)$, $(1,30,19,10,38,28,18,8,35,26,15,6,33,24,14,4,32,21,11,2,29,20,9,37,27,17,7,36,25,16,5,34,23,13,3,31,22,12)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $38$: $D_{19}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 19: $D_{19}$
Low degree siblings
38T3Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{38}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{19}$ | $1$ | $2$ | $19$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)$ |
| 2B | $2^{18},1^{2}$ | $19$ | $2$ | $18$ | $( 3,38)( 4,37)( 5,35)( 6,36)( 7,33)( 8,34)( 9,32)(10,31)(11,29)(12,30)(13,28)(14,27)(15,25)(16,26)(17,24)(18,23)(19,22)(20,21)$ |
| 2C | $2^{19}$ | $19$ | $2$ | $19$ | $( 1,21)( 2,22)( 3,20)( 4,19)( 5,17)( 6,18)( 7,16)( 8,15)( 9,13)(10,14)(11,12)(23,37)(24,38)(25,36)(26,35)(27,34)(28,33)(29,31)(30,32)$ |
| 19A1 | $19^{2}$ | $2$ | $19$ | $36$ | $( 1, 3, 5, 7, 9,11,14,15,18,19,22,23,25,27,29,32,33,35,38)( 2, 4, 6, 8,10,12,13,16,17,20,21,24,26,28,30,31,34,36,37)$ |
| 19A2 | $19^{2}$ | $2$ | $19$ | $36$ | $( 1, 5, 9,14,18,22,25,29,33,38, 3, 7,11,15,19,23,27,32,35)( 2, 6,10,13,17,21,26,30,34,37, 4, 8,12,16,20,24,28,31,36)$ |
| 19A3 | $19^{2}$ | $2$ | $19$ | $36$ | $( 1, 7,14,19,25,32,38, 5,11,18,23,29,35, 3, 9,15,22,27,33)( 2, 8,13,20,26,31,37, 6,12,17,24,30,36, 4,10,16,21,28,34)$ |
| 19A4 | $19^{2}$ | $2$ | $19$ | $36$ | $( 1, 9,18,25,33, 3,11,19,27,35, 5,14,22,29,38, 7,15,23,32)( 2,10,17,26,34, 4,12,20,28,36, 6,13,21,30,37, 8,16,24,31)$ |
| 19A5 | $19^{2}$ | $2$ | $19$ | $36$ | $( 1,11,22,32, 3,14,23,33, 5,15,25,35, 7,18,27,38, 9,19,29)( 2,12,21,31, 4,13,24,34, 6,16,26,36, 8,17,28,37,10,20,30)$ |
| 19A6 | $19^{2}$ | $2$ | $19$ | $36$ | $( 1,14,25,38,11,23,35, 9,22,33, 7,19,32, 5,18,29, 3,15,27)( 2,13,26,37,12,24,36,10,21,34, 8,20,31, 6,17,30, 4,16,28)$ |
| 19A7 | $19^{2}$ | $2$ | $19$ | $36$ | $( 1,15,29, 5,19,33, 9,23,38,14,27, 3,18,32, 7,22,35,11,25)( 2,16,30, 6,20,34,10,24,37,13,28, 4,17,31, 8,21,36,12,26)$ |
| 19A8 | $19^{2}$ | $2$ | $19$ | $36$ | $( 1,18,33,11,27, 5,22,38,15,32, 9,25, 3,19,35,14,29, 7,23)( 2,17,34,12,28, 6,21,37,16,31,10,26, 4,20,36,13,30, 8,24)$ |
| 19A9 | $19^{2}$ | $2$ | $19$ | $36$ | $( 1,19,38,18,35,15,33,14,32,11,29, 9,27, 7,25, 5,23, 3,22)( 2,20,37,17,36,16,34,13,31,12,30,10,28, 8,26, 6,24, 4,21)$ |
| 38A1 | $38$ | $2$ | $38$ | $37$ | $( 1,21, 3,24, 5,26, 7,28, 9,30,11,31,14,34,15,36,18,37,19, 2,22, 4,23, 6,25, 8,27,10,29,12,32,13,33,16,35,17,38,20)$ |
| 38A3 | $38$ | $2$ | $38$ | $37$ | $( 1,24, 7,30,14,36,19, 4,25,10,32,16,38,21, 5,28,11,34,18, 2,23, 8,29,13,35,20, 3,26, 9,31,15,37,22, 6,27,12,33,17)$ |
| 38A5 | $38$ | $2$ | $38$ | $37$ | $( 1,26,11,36,22, 8,32,17, 3,28,14,37,23,10,33,20, 5,30,15, 2,25,12,35,21, 7,31,18, 4,27,13,38,24, 9,34,19, 6,29,16)$ |
| 38A7 | $38$ | $2$ | $38$ | $37$ | $( 1,28,15, 4,29,17, 5,31,19, 8,33,21, 9,36,23,12,38,26,14, 2,27,16, 3,30,18, 6,32,20, 7,34,22,10,35,24,11,37,25,13)$ |
| 38A9 | $38$ | $2$ | $38$ | $37$ | $( 1,30,19,10,38,28,18, 8,35,26,15, 6,33,24,14, 4,32,21,11, 2,29,20, 9,37,27,17, 7,36,25,16, 5,34,23,13, 3,31,22,12)$ |
| 38A11 | $38$ | $2$ | $38$ | $37$ | $( 1,31,23,16, 7,37,29,21,14, 6,35,28,19,12, 3,34,25,17, 9, 2,32,24,15, 8,38,30,22,13, 5,36,27,20,11, 4,33,26,18,10)$ |
| 38A13 | $38$ | $2$ | $38$ | $37$ | $( 1,34,27,21,15,10, 3,36,29,24,18,12, 5,37,32,26,19,13, 7, 2,33,28,22,16, 9, 4,35,30,23,17,11, 6,38,31,25,20,14, 8)$ |
| 38A15 | $38$ | $2$ | $38$ | $37$ | $( 1,36,32,28,23,20,15,12, 7, 4,38,34,29,26,22,17,14,10, 5, 2,35,31,27,24,19,16,11, 8, 3,37,33,30,25,21,18,13, 9, 6)$ |
| 38A17 | $38$ | $2$ | $38$ | $37$ | $( 1,37,35,34,32,30,27,26,23,21,19,17,15,13,11,10, 7, 6, 3, 2,38,36,33,31,29,28,25,24,22,20,18,16,14,12, 9, 8, 5, 4)$ |
Malle's constant $a(G)$: $1/18$
Character table
| 1A | 2A | 2B | 2C | 19A1 | 19A2 | 19A3 | 19A4 | 19A5 | 19A6 | 19A7 | 19A8 | 19A9 | 38A1 | 38A3 | 38A5 | 38A7 | 38A9 | 38A11 | 38A13 | 38A15 | 38A17 | ||
| Size | 1 | 1 | 19 | 19 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
| 2 P | 1A | 1A | 1A | 1A | 19A2 | 19A4 | 19A6 | 19A8 | 19A9 | 19A7 | 19A5 | 19A3 | 19A1 | 19A1 | 19A3 | 19A5 | 19A7 | 19A9 | 19A8 | 19A6 | 19A4 | 19A2 | |
| 19 P | 1A | 2A | 2B | 2C | 19A3 | 19A6 | 19A9 | 19A7 | 19A4 | 19A1 | 19A2 | 19A5 | 19A8 | 38A3 | 38A9 | 38A15 | 38A17 | 38A11 | 38A5 | 38A1 | 38A7 | 38A13 | |
| Type | |||||||||||||||||||||||
| 76.3.1a | R | ||||||||||||||||||||||
| 76.3.1b | R | ||||||||||||||||||||||
| 76.3.1c | R | ||||||||||||||||||||||
| 76.3.1d | R | ||||||||||||||||||||||
| 76.3.2a1 | R | ||||||||||||||||||||||
| 76.3.2a2 | R | ||||||||||||||||||||||
| 76.3.2a3 | R | ||||||||||||||||||||||
| 76.3.2a4 | R | ||||||||||||||||||||||
| 76.3.2a5 | R | ||||||||||||||||||||||
| 76.3.2a6 | R | ||||||||||||||||||||||
| 76.3.2a7 | R | ||||||||||||||||||||||
| 76.3.2a8 | R | ||||||||||||||||||||||
| 76.3.2a9 | R | ||||||||||||||||||||||
| 76.3.2b1 | R | ||||||||||||||||||||||
| 76.3.2b2 | R | ||||||||||||||||||||||
| 76.3.2b3 | R | ||||||||||||||||||||||
| 76.3.2b4 | R | ||||||||||||||||||||||
| 76.3.2b5 | R | ||||||||||||||||||||||
| 76.3.2b6 | R | ||||||||||||||||||||||
| 76.3.2b7 | R | ||||||||||||||||||||||
| 76.3.2b8 | R | ||||||||||||||||||||||
| 76.3.2b9 | R |
Regular extensions
Data not computed