Group action invariants
| Degree $n$ : | $38$ | |
| Transitive number $t$ : | $2$ | |
| Group : | $D_{19}$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,4)(2,3)(5,37)(6,38)(7,36)(8,35)(9,33)(10,34)(11,32)(12,31)(13,30)(14,29)(15,28)(16,27)(17,25)(18,26)(19,24)(20,23)(21,22), (1,9)(2,10)(3,8)(4,7)(5,6)(11,37)(12,38)(13,36)(14,35)(15,33)(16,34)(17,32)(18,31)(19,30)(20,29)(21,27)(22,28)(23,25)(24,26) | |
| $|\Aut(F/K)|$: | $38$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 19: $D_{19}$
Low degree siblings
19T2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $19$ | $2$ | $( 1, 2)( 3,37)( 4,38)( 5,36)( 6,35)( 7,34)( 8,33)( 9,31)(10,32)(11,30)(12,29) (13,27)(14,28)(15,26)(16,25)(17,24)(18,23)(19,22)(20,21)$ |
| $ 19, 19 $ | $2$ | $19$ | $( 1, 3, 5, 7,10,11,13,16,17,19,21,23,26,28,29,31,33,35,38)( 2, 4, 6, 8, 9,12, 14,15,18,20,22,24,25,27,30,32,34,36,37)$ |
| $ 19, 19 $ | $2$ | $19$ | $( 1, 5,10,13,17,21,26,29,33,38, 3, 7,11,16,19,23,28,31,35)( 2, 6, 9,14,18,22, 25,30,34,37, 4, 8,12,15,20,24,27,32,36)$ |
| $ 19, 19 $ | $2$ | $19$ | $( 1, 7,13,19,26,31,38, 5,11,17,23,29,35, 3,10,16,21,28,33)( 2, 8,14,20,25,32, 37, 6,12,18,24,30,36, 4, 9,15,22,27,34)$ |
| $ 19, 19 $ | $2$ | $19$ | $( 1,10,17,26,33, 3,11,19,28,35, 5,13,21,29,38, 7,16,23,31)( 2, 9,18,25,34, 4, 12,20,27,36, 6,14,22,30,37, 8,15,24,32)$ |
| $ 19, 19 $ | $2$ | $19$ | $( 1,11,21,31, 3,13,23,33, 5,16,26,35, 7,17,28,38,10,19,29)( 2,12,22,32, 4,14, 24,34, 6,15,25,36, 8,18,27,37, 9,20,30)$ |
| $ 19, 19 $ | $2$ | $19$ | $( 1,13,26,38,11,23,35,10,21,33, 7,19,31, 5,17,29, 3,16,28)( 2,14,25,37,12,24, 36, 9,22,34, 8,20,32, 6,18,30, 4,15,27)$ |
| $ 19, 19 $ | $2$ | $19$ | $( 1,16,29, 5,19,33,10,23,38,13,28, 3,17,31, 7,21,35,11,26)( 2,15,30, 6,20,34, 9,24,37,14,27, 4,18,32, 8,22,36,12,25)$ |
| $ 19, 19 $ | $2$ | $19$ | $( 1,17,33,11,28, 5,21,38,16,31,10,26, 3,19,35,13,29, 7,23)( 2,18,34,12,27, 6, 22,37,15,32, 9,25, 4,20,36,14,30, 8,24)$ |
| $ 19, 19 $ | $2$ | $19$ | $( 1,19,38,17,35,16,33,13,31,11,29,10,28, 7,26, 5,23, 3,21)( 2,20,37,18,36,15, 34,14,32,12,30, 9,27, 8,25, 6,24, 4,22)$ |
Group invariants
| Order: | $38=2 \cdot 19$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [38, 1] |
| Character table: |
2 1 1 . . . . . . . . .
19 1 . 1 1 1 1 1 1 1 1 1
1a 2a 19a 19b 19c 19d 19e 19f 19g 19h 19i
2P 1a 1a 19b 19d 19f 19h 19i 19g 19e 19c 19a
3P 1a 2a 19c 19f 19i 19g 19d 19a 19b 19e 19h
5P 1a 2a 19e 19i 19d 19a 19f 19h 19c 19b 19g
7P 1a 2a 19g 19e 19b 19i 19c 19d 19h 19a 19f
11P 1a 2a 19h 19c 19e 19f 19b 19i 19a 19g 19d
13P 1a 2a 19f 19g 19a 19e 19h 19b 19d 19i 19c
17P 1a 2a 19b 19d 19f 19h 19i 19g 19e 19c 19a
19P 1a 2a 1a 1a 1a 1a 1a 1a 1a 1a 1a
X.1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 1 1 1 1 1 1 1 1
X.3 2 . A C G D F B E H I
X.4 2 . B E A F H C D I G
X.5 2 . C D B H I E F G A
X.6 2 . D H E G A F I B C
X.7 2 . E F C I G D H A B
X.8 2 . F I D A B H G C E
X.9 2 . G B I E D A C F H
X.10 2 . H G F B C I A E D
X.11 2 . I A H C E G B D F
A = E(19)^6+E(19)^13
B = E(19)^2+E(19)^17
C = E(19)^7+E(19)^12
D = E(19)^5+E(19)^14
E = E(19)^4+E(19)^15
F = E(19)^8+E(19)^11
G = E(19)+E(19)^18
H = E(19)^9+E(19)^10
I = E(19)^3+E(19)^16
|