Label 38T13
Degree $38$
Order $2166$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group no

Learn more about

Group action invariants

Degree $n$:  $38$
Transitive number $t$:  $13$
Parity:  $-1$
Primitive:  no
Nilpotency class:  $-1$ (not nilpotent)
$|\Aut(F/K)|$:  $1$
Generators:  (1,24,16,26,12,28,8,30,4,32,19,34,15,36,11,38,7,21,3,23,18,25,14,27,10,29,6,31,2,33,17,35,13,37,9,20,5,22), (1,9,2)(3,12,16)(5,15,11)(6,7,18)(8,10,13)(14,19,17)(20,21,28)(22,35,31)(24,30,34)(25,37,26)(27,32,29)(33,36,38)

Low degree resolvents

|G/N|Galois groups for stem field(s)
$2$:  $C_2$
$6$:  $S_3$

Resolvents shown for degrees $\leq 47$


Degree 2: $C_2$

Degree 19: None

Low degree siblings

There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

There are 90 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $2166=2 \cdot 3 \cdot 19^{2}$
Cyclic:  no
Abelian:  no
Solvable:  yes
GAP id:  not available
Character table: not available.