Show commands: Magma
Group invariants
| Abstract group: | $F_{37}$ |
| |
| Order: | $1332=2^{2} \cdot 3^{2} \cdot 37$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $37$ |
| |
| Transitive number $t$: | $9$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | yes |
| |
| $\card{\Aut(F/K)}$: | $1$ |
| |
| Generators: | $(1,2,4,8,16,32,27,17,34,31,25,13,26,15,30,23,9,18,36,35,33,29,21,5,10,20,3,6,12,24,11,22,7,14,28,19)$, $(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $3$: $C_3$ $4$: $C_4$ $6$: $C_6$ $9$: $C_9$ $12$: $C_{12}$ $18$: $C_{18}$ $36$: $C_{36}$ Resolvents shown for degrees $\leq 47$
Subfields
Prime degree - none
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{37}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{18},1$ | $37$ | $2$ | $18$ | $( 1,16)( 2,15)( 3,14)( 4,13)( 5,12)( 6,11)( 7,10)( 8, 9)(17,37)(18,36)(19,35)(20,34)(21,33)(22,32)(23,31)(24,30)(25,29)(26,28)$ |
| 3A1 | $3^{12},1$ | $37$ | $3$ | $24$ | $( 1,26,17)( 2,36, 6)( 3, 9,32)( 4,19,21)( 5,29,10)( 7,12,25)( 8,22,14)(11,15,18)(13,35,33)(16,28,37)(20,31,30)(23,24,34)$ |
| 3A-1 | $3^{12},1$ | $37$ | $3$ | $24$ | $( 1,17,26)( 2, 6,36)( 3,32, 9)( 4,21,19)( 5,10,29)( 7,25,12)( 8,14,22)(11,18,15)(13,33,35)(16,37,28)(20,30,31)(23,34,24)$ |
| 4A1 | $4^{9},1$ | $37$ | $4$ | $27$ | $( 1,35,16,19)( 2,29,15,25)( 3,23,14,31)( 4,17,13,37)( 5,11,12, 6)( 7,36,10,18)( 8,30, 9,24)(20,32,34,22)(21,26,33,28)$ |
| 4A-1 | $4^{9},1$ | $37$ | $4$ | $27$ | $( 1,19,16,35)( 2,25,15,29)( 3,31,14,23)( 4,37,13,17)( 5, 6,12,11)( 7,18,10,36)( 8,24, 9,30)(20,22,34,32)(21,28,33,26)$ |
| 6A1 | $6^{6},1$ | $37$ | $6$ | $30$ | $( 1,37,26,16,17,28)( 2,11,36,15, 6,18)( 3,22, 9,14,32, 8)( 4,33,19,13,21,35)( 5, 7,29,12,10,25)(20,24,31,34,30,23)$ |
| 6A-1 | $6^{6},1$ | $37$ | $6$ | $30$ | $( 1,28,17,16,26,37)( 2,18, 6,15,36,11)( 3, 8,32,14, 9,22)( 4,35,21,13,19,33)( 5,25,10,12,29, 7)(20,23,30,34,31,24)$ |
| 9A1 | $9^{4},1$ | $37$ | $9$ | $32$ | $( 1,30,11,26,20,15,17,31,18)( 2,37,23,36,16,24, 6,28,34)( 3, 7,35, 9,12,33,32,25,13)( 4,14,10,19, 8, 5,21,22,29)$ |
| 9A-1 | $9^{4},1$ | $37$ | $9$ | $32$ | $( 1,18,31,17,15,20,26,11,30)( 2,34,28, 6,24,16,36,23,37)( 3,13,25,32,33,12, 9,35, 7)( 4,29,22,21, 5, 8,19,10,14)$ |
| 9A2 | $9^{4},1$ | $37$ | $9$ | $32$ | $( 1,11,20,17,18,30,26,15,31)( 2,23,16, 6,34,37,36,24,28)( 3,35,12,32,13, 7, 9,33,25)( 4,10, 8,21,29,14,19, 5,22)$ |
| 9A-2 | $9^{4},1$ | $37$ | $9$ | $32$ | $( 1,31,15,26,30,18,17,20,11)( 2,28,24,36,37,34, 6,16,23)( 3,25,33, 9, 7,13,32,12,35)( 4,22, 5,19,14,29,21, 8,10)$ |
| 9A4 | $9^{4},1$ | $37$ | $9$ | $32$ | $( 1,20,18,26,31,11,17,30,15)( 2,16,34,36,28,23, 6,37,24)( 3,12,13, 9,25,35,32, 7,33)( 4, 8,29,19,22,10,21,14, 5)$ |
| 9A-4 | $9^{4},1$ | $37$ | $9$ | $32$ | $( 1,15,30,17,11,31,26,18,20)( 2,24,37, 6,23,28,36,34,16)( 3,33, 7,32,35,25, 9,13,12)( 4, 5,14,21,10,22,19,29, 8)$ |
| 12A1 | $12^{3},1$ | $37$ | $12$ | $33$ | $( 1,21,37,35,26, 4,16,33,17,19,28,13)( 2, 7,11,29,36,12,15,10, 6,25,18, 5)( 3,30,22,23, 9,20,14,24,32,31, 8,34)$ |
| 12A-1 | $12^{3},1$ | $37$ | $12$ | $33$ | $( 1,13,28,19,17,33,16, 4,26,35,37,21)( 2, 5,18,25, 6,10,15,12,36,29,11, 7)( 3,34, 8,31,32,24,14,20, 9,23,22,30)$ |
| 12A5 | $12^{3},1$ | $37$ | $12$ | $33$ | $( 1, 4,28,35,17,21,16,13,26,19,37,33)( 2,12,18,29, 6, 7,15, 5,36,25,11,10)( 3,20, 8,23,32,30,14,34, 9,31,22,24)$ |
| 12A-5 | $12^{3},1$ | $37$ | $12$ | $33$ | $( 1,33,37,19,26,13,16,21,17,35,28, 4)( 2,10,11,25,36, 5,15, 7, 6,29,18,12)( 3,24,22,31, 9,34,14,30,32,23, 8,20)$ |
| 18A1 | $18^{2},1$ | $37$ | $18$ | $34$ | $( 1, 2,30,37,11,23,26,36,20,16,15,24,17, 6,31,28,18,34)( 3,21, 7,22,35,29, 9, 4,12,14,33,10,32,19,25, 8,13, 5)$ |
| 18A-1 | $18^{2},1$ | $37$ | $18$ | $34$ | $( 1,34,18,28,31, 6,17,24,15,16,20,36,26,23,11,37,30, 2)( 3, 5,13, 8,25,19,32,10,33,14,12, 4, 9,29,35,22, 7,21)$ |
| 18A5 | $18^{2},1$ | $37$ | $18$ | $34$ | $( 1,23,15,28,30,36,17,34,11,16,31, 2,26,24,18,37,20, 6)( 3,29,33, 8, 7, 4,32, 5,35,14,25,21, 9,10,13,22,12,19)$ |
| 18A-5 | $18^{2},1$ | $37$ | $18$ | $34$ | $( 1, 6,20,37,18,24,26, 2,31,16,11,34,17,36,30,28,15,23)( 3,19,12,22,13,10, 9,21,25,14,35, 5,32, 4, 7, 8,33,29)$ |
| 18A7 | $18^{2},1$ | $37$ | $18$ | $34$ | $( 1,36,31,37,15,34,26, 6,30,16,18,23,17, 2,20,28,11,24)( 3, 4,25,22,33, 5, 9,19, 7,14,13,29,32,21,12, 8,35,10)$ |
| 18A-7 | $18^{2},1$ | $37$ | $18$ | $34$ | $( 1,24,11,28,20, 2,17,23,18,16,30, 6,26,34,15,37,31,36)( 3,10,35, 8,12,21,32,29,13,14, 7,19, 9, 5,33,22,25, 4)$ |
| 36A1 | $36,1$ | $37$ | $36$ | $35$ | $( 1, 3, 2,21,30, 7,37,22,11,35,23,29,26, 9,36, 4,20,12,16,14,15,33,24,10,17,32, 6,19,31,25,28, 8,18,13,34, 5)$ |
| 36A-1 | $36,1$ | $37$ | $36$ | $35$ | $( 1, 5,34,13,18, 8,28,25,31,19, 6,32,17,10,24,33,15,14,16,12,20, 4,36, 9,26,29,23,35,11,22,37, 7,30,21, 2, 3)$ |
| 36A5 | $36,1$ | $37$ | $36$ | $35$ | $( 1, 7,23, 4,15,32,28, 5,30,35,36,14,17,25,34,21,11, 9,16,10,31,13, 2,22,26,12,24,19,18, 3,37,29,20,33, 6, 8)$ |
| 36A-5 | $36,1$ | $37$ | $36$ | $35$ | $( 1, 8, 6,33,20,29,37, 3,18,19,24,12,26,22, 2,13,31,10,16, 9,11,21,34,25,17,14,36,35,30, 5,28,32,15, 4,23, 7)$ |
| 36A7 | $36,1$ | $37$ | $36$ | $35$ | $( 1,22,36,33,31, 5,37, 9,15,19,34, 7,26,14, 6,13,30,29,16,32,18,21,23,12,17, 8, 2,35,20,10,28, 3,11, 4,24,25)$ |
| 36A-7 | $36,1$ | $37$ | $36$ | $35$ | $( 1,25,24, 4,11, 3,28,10,20,35, 2, 8,17,12,23,21,18,32,16,29,30,13, 6,14,26, 7,34,19,15, 9,37, 5,31,33,36,22)$ |
| 36A11 | $36,1$ | $37$ | $36$ | $35$ | $( 1,29,24,13,11,14,28, 7,20,19, 2, 9,17, 5,23,33,18,22,16,25,30, 4, 6, 3,26,10,34,35,15, 8,37,12,31,21,36,32)$ |
| 36A-11 | $36,1$ | $37$ | $36$ | $35$ | $( 1,32,36,21,31,12,37, 8,15,35,34,10,26, 3, 6, 4,30,25,16,22,18,33,23, 5,17, 9, 2,19,20, 7,28,14,11,13,24,29)$ |
| 36A13 | $36,1$ | $37$ | $36$ | $35$ | $( 1, 9, 6,21,20,25,37,14,18,35,24, 5,26,32, 2, 4,31, 7,16, 8,11,33,34,29,17, 3,36,19,30,12,28,22,15,13,23,10)$ |
| 36A-13 | $36,1$ | $37$ | $36$ | $35$ | $( 1,10,23,13,15,22,28,12,30,19,36, 3,17,29,34,33,11, 8,16, 7,31, 4, 2,32,26, 5,24,35,18,14,37,25,20,21, 6, 9)$ |
| 36A17 | $36,1$ | $37$ | $36$ | $35$ | $( 1,12,34, 4,18, 9,28,29,31,35, 6,22,17, 7,24,21,15, 3,16, 5,20,13,36, 8,26,25,23,19,11,32,37,10,30,33, 2,14)$ |
| 36A-17 | $36,1$ | $37$ | $36$ | $35$ | $( 1,14, 2,33,30,10,37,32,11,19,23,25,26, 8,36,13,20, 5,16, 3,15,21,24, 7,17,22, 6,35,31,29,28, 9,18, 4,34,12)$ |
| 37A | $37$ | $36$ | $37$ | $36$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37)$ |
Malle's constant $a(G)$: $1/18$
Character table
37 x 37 character table
Regular extensions
Data not computed