Properties

Label 37T6
37T6 1 2 1->2 16 1->16 3 2->3 32 2->32 4 3->4 11 3->11 5 4->5 27 4->27 6 5->6 5->6 7 6->7 22 6->22 7->1 8 7->8 9 8->9 17 8->17 10 9->10 33 9->33 10->11 12 10->12 11->12 28 11->28 12->7 13 12->13 14 13->14 23 13->23 14->2 15 14->15 15->16 18 15->18 16->17 34 16->34 17->13 17->18 19 18->19 29 18->29 19->8 20 19->20 21 20->21 24 20->24 21->3 21->22 22->19 22->23 23->24 35 23->35 24->14 25 24->25 26 25->26 30 25->30 26->9 26->27 27->25 27->28 28->4 28->29 29->20 29->30 31 30->31 36 30->36 31->15 31->32 32->31 32->33 33->10 33->34 34->26 34->35 35->5 35->36 36->21 37 36->37 37->1
Degree $37$
Order $333$
Cyclic no
Abelian no
Solvable yes
Primitive yes
$p$-group no
Group: $C_{37}:C_{9}$

Related objects

Downloads

Learn more

Show commands: Magma

Copy content magma:G := TransitiveGroup(37, 6);
 

Group invariants

Abstract group:  $C_{37}:C_{9}$
Copy content magma:IdentifyGroup(G);
 
Order:  $333=3^{2} \cdot 37$
Copy content magma:Order(G);
 
Cyclic:  no
Copy content magma:IsCyclic(G);
 
Abelian:  no
Copy content magma:IsAbelian(G);
 
Solvable:  yes
Copy content magma:IsSolvable(G);
 
Nilpotency class:   not nilpotent
Copy content magma:NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $37$
Copy content magma:t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $6$
Copy content magma:t, n := TransitiveGroupIdentification(G); t;
 
Parity:  $1$
Copy content magma:IsEven(G);
 
Primitive:  yes
Copy content magma:IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $1$
Copy content magma:Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37)$, $(1,16,34,26,9,33,10,12,7)(2,32,31,15,18,29,20,24,14)(3,11,28,4,27,25,30,36,21)(5,6,22,19,8,17,13,23,35)$
Copy content magma:Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$3$:  $C_3$
$9$:  $C_9$

Resolvents shown for degrees $\leq 47$

Subfields

Prime degree - none

Low degree siblings

There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{37}$ $1$ $1$ $0$ $()$
3A1 $3^{12},1$ $37$ $3$ $24$ $( 1,29,13)( 3,12,28)( 4,22,17)( 5,32, 6)( 7,15,21)( 8,25,10)( 9,35,36)(11,18,14)(16,31,33)(19,24,37)(20,34,26)(23,27,30)$
3A-1 $3^{12},1$ $37$ $3$ $24$ $( 1,13,29)( 3,28,12)( 4,17,22)( 5, 6,32)( 7,21,15)( 8,10,25)( 9,36,35)(11,14,18)(16,33,31)(19,37,24)(20,26,34)(23,30,27)$
9A1 $9^{4},1$ $37$ $9$ $32$ $( 1, 5,30,29,32,23,13, 6,27)( 3,36,11,12, 9,18,28,35,14)( 4,33,20,22,16,34,17,31,26)( 7,24,10,15,37, 8,21,19,25)$
9A-1 $9^{4},1$ $37$ $9$ $32$ $( 1,27, 6,13,23,32,29,30, 5)( 3,14,35,28,18, 9,12,11,36)( 4,26,31,17,34,16,22,20,33)( 7,25,19,21, 8,37,15,10,24)$
9A2 $9^{4},1$ $37$ $9$ $32$ $( 1,30,32,13,27, 5,29,23, 6)( 3,11, 9,28,14,36,12,18,35)( 4,20,16,17,26,33,22,34,31)( 7,10,37,21,25,24,15, 8,19)$
9A-2 $9^{4},1$ $37$ $9$ $32$ $( 1, 6,23,29, 5,27,13,32,30)( 3,35,18,12,36,14,28, 9,11)( 4,31,34,22,33,26,17,16,20)( 7,19, 8,15,24,25,21,37,10)$
9A4 $9^{4},1$ $37$ $9$ $32$ $( 1,32,27,29, 6,30,13, 5,23)( 3, 9,14,12,35,11,28,36,18)( 4,16,26,22,31,20,17,33,34)( 7,37,25,15,19,10,21,24, 8)$
9A-4 $9^{4},1$ $37$ $9$ $32$ $( 1,23, 5,13,30, 6,29,27,32)( 3,18,36,28,11,35,12,14, 9)( 4,34,33,17,20,31,22,26,16)( 7, 8,24,21,10,19,15,25,37)$
37A1 $37$ $9$ $37$ $36$ $( 1,37,36,35,34,33,32,31,30,29,28,27,26,25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2)$
37A-1 $37$ $9$ $37$ $36$ $( 1,35,32,29,26,23,20,17,14,11, 8, 5, 2,36,33,30,27,24,21,18,15,12, 9, 6, 3,37,34,31,28,25,22,19,16,13,10, 7, 4)$
37A2 $37$ $9$ $37$ $36$ $( 1,36,34,32,30,28,26,24,22,20,18,16,14,12,10, 8, 6, 4, 2,37,35,33,31,29,27,25,23,21,19,17,15,13,11, 9, 7, 5, 3)$
37A-2 $37$ $9$ $37$ $36$ $( 1,33,28,23,18,13, 8, 3,35,30,25,20,15,10, 5,37,32,27,22,17,12, 7, 2,34,29,24,19,14, 9, 4,36,31,26,21,16,11, 6)$

Malle's constant $a(G)$:     $1/24$

Copy content magma:ConjugacyClasses(G);
 

Character table

1A 3A1 3A-1 9A1 9A-1 9A2 9A-2 9A4 9A-4 37A1 37A-1 37A2 37A-2
Size 1 37 37 37 37 37 37 37 37 9 9 9 9
3 P 1A 3A-1 3A1 9A2 9A-2 9A4 9A-4 9A-1 9A1 37A2 37A-2 37A-1 37A1
37 P 1A 1A 1A 3A1 3A-1 3A-1 3A1 3A1 3A-1 37A-1 37A1 37A-2 37A2
Type
333.3.1a R 1 1 1 1 1 1 1 1 1 1 1 1 1
333.3.1b1 C 1 1 1 ζ31 ζ31 ζ31 ζ3 ζ3 ζ3 1 1 1 1
333.3.1b2 C 1 1 1 ζ3 ζ3 ζ3 ζ31 ζ31 ζ31 1 1 1 1
333.3.1c1 C 1 ζ93 ζ93 ζ94 ζ9 ζ92 ζ91 ζ94 ζ92 1 1 1 1
333.3.1c2 C 1 ζ93 ζ93 ζ94 ζ91 ζ92 ζ9 ζ94 ζ92 1 1 1 1
333.3.1c3 C 1 ζ93 ζ93 ζ92 ζ94 ζ9 ζ94 ζ92 ζ91 1 1 1 1
333.3.1c4 C 1 ζ93 ζ93 ζ92 ζ94 ζ91 ζ94 ζ92 ζ9 1 1 1 1
333.3.1c5 C 1 ζ93 ζ93 ζ9 ζ92 ζ94 ζ92 ζ91 ζ94 1 1 1 1
333.3.1c6 C 1 ζ93 ζ93 ζ91 ζ92 ζ94 ζ92 ζ9 ζ94 1 1 1 1
333.3.9a1 C 9 0 0 0 0 0 0 0 0 ζ3717+ζ3713+ζ378+ζ376+ζ375+ζ372+ζ3714+ζ3715+ζ3718 ζ3718+ζ3715+ζ3714+ζ372+ζ375+ζ376+ζ378+ζ3713+ζ3717 ζ3716+ζ3712+ζ3710+ζ379+ζ377+ζ371+ζ373+ζ374+ζ3711 ζ3711+ζ374+ζ373+ζ37+ζ377+ζ379+ζ3710+ζ3712+ζ3716
333.3.9a2 C 9 0 0 0 0 0 0 0 0 ζ3718+ζ3715+ζ3714+ζ372+ζ375+ζ376+ζ378+ζ3713+ζ3717 ζ3717+ζ3713+ζ378+ζ376+ζ375+ζ372+ζ3714+ζ3715+ζ3718 ζ3711+ζ374+ζ373+ζ37+ζ377+ζ379+ζ3710+ζ3712+ζ3716 ζ3716+ζ3712+ζ3710+ζ379+ζ377+ζ371+ζ373+ζ374+ζ3711
333.3.9a3 C 9 0 0 0 0 0 0 0 0 ζ3716+ζ3712+ζ3710+ζ379+ζ377+ζ371+ζ373+ζ374+ζ3711 ζ3711+ζ374+ζ373+ζ37+ζ377+ζ379+ζ3710+ζ3712+ζ3716 ζ3718+ζ3715+ζ3714+ζ372+ζ375+ζ376+ζ378+ζ3713+ζ3717 ζ3717+ζ3713+ζ378+ζ376+ζ375+ζ372+ζ3714+ζ3715+ζ3718
333.3.9a4 C 9 0 0 0 0 0 0 0 0 ζ3711+ζ374+ζ373+ζ37+ζ377+ζ379+ζ3710+ζ3712+ζ3716 ζ3716+ζ3712+ζ3710+ζ379+ζ377+ζ371+ζ373+ζ374+ζ3711 ζ3717+ζ3713+ζ378+ζ376+ζ375+ζ372+ζ3714+ζ3715+ζ3718 ζ3718+ζ3715+ζ3714+ζ372+ζ375+ζ376+ζ378+ζ3713+ζ3717

Copy content magma:CharacterTable(G);
 

Regular extensions

Data not computed