Show commands: Magma
Group invariants
| Abstract group: | $C_{37}:C_{9}$ |
| |
| Order: | $333=3^{2} \cdot 37$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $37$ |
| |
| Transitive number $t$: | $6$ |
| |
| Parity: | $1$ |
| |
| Primitive: | yes |
| |
| $\card{\Aut(F/K)}$: | $1$ |
| |
| Generators: | $(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37)$, $(1,16,34,26,9,33,10,12,7)(2,32,31,15,18,29,20,24,14)(3,11,28,4,27,25,30,36,21)(5,6,22,19,8,17,13,23,35)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $3$: $C_3$ $9$: $C_9$ Resolvents shown for degrees $\leq 47$
Subfields
Prime degree - none
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{37}$ | $1$ | $1$ | $0$ | $()$ |
| 3A1 | $3^{12},1$ | $37$ | $3$ | $24$ | $( 1,29,13)( 3,12,28)( 4,22,17)( 5,32, 6)( 7,15,21)( 8,25,10)( 9,35,36)(11,18,14)(16,31,33)(19,24,37)(20,34,26)(23,27,30)$ |
| 3A-1 | $3^{12},1$ | $37$ | $3$ | $24$ | $( 1,13,29)( 3,28,12)( 4,17,22)( 5, 6,32)( 7,21,15)( 8,10,25)( 9,36,35)(11,14,18)(16,33,31)(19,37,24)(20,26,34)(23,30,27)$ |
| 9A1 | $9^{4},1$ | $37$ | $9$ | $32$ | $( 1, 5,30,29,32,23,13, 6,27)( 3,36,11,12, 9,18,28,35,14)( 4,33,20,22,16,34,17,31,26)( 7,24,10,15,37, 8,21,19,25)$ |
| 9A-1 | $9^{4},1$ | $37$ | $9$ | $32$ | $( 1,27, 6,13,23,32,29,30, 5)( 3,14,35,28,18, 9,12,11,36)( 4,26,31,17,34,16,22,20,33)( 7,25,19,21, 8,37,15,10,24)$ |
| 9A2 | $9^{4},1$ | $37$ | $9$ | $32$ | $( 1,30,32,13,27, 5,29,23, 6)( 3,11, 9,28,14,36,12,18,35)( 4,20,16,17,26,33,22,34,31)( 7,10,37,21,25,24,15, 8,19)$ |
| 9A-2 | $9^{4},1$ | $37$ | $9$ | $32$ | $( 1, 6,23,29, 5,27,13,32,30)( 3,35,18,12,36,14,28, 9,11)( 4,31,34,22,33,26,17,16,20)( 7,19, 8,15,24,25,21,37,10)$ |
| 9A4 | $9^{4},1$ | $37$ | $9$ | $32$ | $( 1,32,27,29, 6,30,13, 5,23)( 3, 9,14,12,35,11,28,36,18)( 4,16,26,22,31,20,17,33,34)( 7,37,25,15,19,10,21,24, 8)$ |
| 9A-4 | $9^{4},1$ | $37$ | $9$ | $32$ | $( 1,23, 5,13,30, 6,29,27,32)( 3,18,36,28,11,35,12,14, 9)( 4,34,33,17,20,31,22,26,16)( 7, 8,24,21,10,19,15,25,37)$ |
| 37A1 | $37$ | $9$ | $37$ | $36$ | $( 1,37,36,35,34,33,32,31,30,29,28,27,26,25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2)$ |
| 37A-1 | $37$ | $9$ | $37$ | $36$ | $( 1,35,32,29,26,23,20,17,14,11, 8, 5, 2,36,33,30,27,24,21,18,15,12, 9, 6, 3,37,34,31,28,25,22,19,16,13,10, 7, 4)$ |
| 37A2 | $37$ | $9$ | $37$ | $36$ | $( 1,36,34,32,30,28,26,24,22,20,18,16,14,12,10, 8, 6, 4, 2,37,35,33,31,29,27,25,23,21,19,17,15,13,11, 9, 7, 5, 3)$ |
| 37A-2 | $37$ | $9$ | $37$ | $36$ | $( 1,33,28,23,18,13, 8, 3,35,30,25,20,15,10, 5,37,32,27,22,17,12, 7, 2,34,29,24,19,14, 9, 4,36,31,26,21,16,11, 6)$ |
Malle's constant $a(G)$: $1/24$
Character table
| 1A | 3A1 | 3A-1 | 9A1 | 9A-1 | 9A2 | 9A-2 | 9A4 | 9A-4 | 37A1 | 37A-1 | 37A2 | 37A-2 | ||
| Size | 1 | 37 | 37 | 37 | 37 | 37 | 37 | 37 | 37 | 9 | 9 | 9 | 9 | |
| 3 P | 1A | 3A-1 | 3A1 | 9A2 | 9A-2 | 9A4 | 9A-4 | 9A-1 | 9A1 | 37A2 | 37A-2 | 37A-1 | 37A1 | |
| 37 P | 1A | 1A | 1A | 3A1 | 3A-1 | 3A-1 | 3A1 | 3A1 | 3A-1 | 37A-1 | 37A1 | 37A-2 | 37A2 | |
| Type | ||||||||||||||
| 333.3.1a | R | |||||||||||||
| 333.3.1b1 | C | |||||||||||||
| 333.3.1b2 | C | |||||||||||||
| 333.3.1c1 | C | |||||||||||||
| 333.3.1c2 | C | |||||||||||||
| 333.3.1c3 | C | |||||||||||||
| 333.3.1c4 | C | |||||||||||||
| 333.3.1c5 | C | |||||||||||||
| 333.3.1c6 | C | |||||||||||||
| 333.3.9a1 | C | |||||||||||||
| 333.3.9a2 | C | |||||||||||||
| 333.3.9a3 | C | |||||||||||||
| 333.3.9a4 | C |
Regular extensions
Data not computed