Show commands: Magma
Group invariants
Abstract group: | $S_{37}$ |
| |
Order: | $13763753091226345046315979581580902400000000=2^{34} \cdot 3^{17} \cdot 5^{8} \cdot 7^{5} \cdot 11^{3} \cdot 13^{2} \cdot 17^{2} \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 37$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | no |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $37$ |
| |
Transitive number $t$: | $11$ |
| |
Parity: | $-1$ |
| |
Primitive: | yes |
| |
$\card{\Aut(F/K)}$: | $1$ |
| |
Generators: | $(1,2)$, $(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Prime degree - none
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
Character table not computed
Regular extensions
Data not computed