Show commands: Magma
Group invariants
| Abstract group: | $\PSL(2,8)$ |
| |
| Order: | $504=2^{3} \cdot 3^{2} \cdot 7$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | no |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $36$ |
| |
| Transitive number $t$: | $712$ |
| |
| Parity: | $1$ |
| |
| Primitive: | yes |
| |
| $\card{\Aut(F/K)}$: | $1$ |
| |
| Generators: | $(1,2,6,17,19,8,4)(3,10,23,12,28,25,13)(5,15,9,22,20,14,18)(7,16,31,30,29,21,32)(11,26,34,35,27,33,24)$, $(1,4)(2,8)(3,11)(5,14)(6,19)(7,21)(9,22)(10,24)(12,27)(13,26)(15,20)(16,29)(23,33)(25,34)(28,35)(30,31)$, $(1,3)(2,7)(4,13)(5,12)(6,18)(8,9)(10,14)(11,26)(16,23)(17,31)(20,32)(21,22)(24,27)(25,29)(33,34)(35,36)$ |
|
Low degree resolvents
noneResolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: None
Degree 4: None
Degree 6: None
Degree 9: None
Degree 12: None
Degree 18: None
Low degree siblings
9T27, 28T70Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{36}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{16},1^{4}$ | $63$ | $2$ | $16$ | $( 1, 9)( 3,23)( 4,11)( 5,21)( 6,31)( 7,26)( 8,24)(10,28)(12,36)(13,25)(14,17)(15,32)(18,33)(19,29)(20,35)(27,30)$ |
| 3A | $3^{12}$ | $56$ | $3$ | $24$ | $( 1,10,34)( 2, 3,26)( 4,16,20)( 5,17, 8)( 6,22,32)( 7,14, 9)(11,18,28)(12,35,21)(13,24,31)(15,23,33)(19,30,29)(25,36,27)$ |
| 7A1 | $7^{5},1$ | $72$ | $7$ | $30$ | $( 1,34,31,30,19, 5,11)( 2,20,14,33,21, 4,26)( 6,17,29,24,15, 7,22)( 8,32, 9,16,35,27,18)(10,28,36,25,12,23,13)$ |
| 7A2 | $7^{5},1$ | $72$ | $7$ | $30$ | $( 1,31,19,11,34,30, 5)( 2,14,21,26,20,33, 4)( 6,29,15,22,17,24, 7)( 8, 9,35,18,32,16,27)(10,36,12,13,28,25,23)$ |
| 7A3 | $7^{5},1$ | $72$ | $7$ | $30$ | $( 1,30,11,31, 5,34,19)( 2,33,26,14, 4,20,21)( 6,24,22,29, 7,17,15)( 8,16,18, 9,27,32,35)(10,25,13,36,23,28,12)$ |
| 9A1 | $9^{4}$ | $56$ | $9$ | $32$ | $( 1,29, 3,10,19,26,34,30, 2)( 4, 6,25,16,22,36,20,32,27)( 5,15,28,17,23,11, 8,33,18)( 7,13,21,14,24,12, 9,31,35)$ |
| 9A2 | $9^{4}$ | $56$ | $9$ | $32$ | $( 1, 3,19,34, 2,29,10,26,30)( 4,25,22,20,27, 6,16,36,32)( 5,28,23, 8,18,15,17,11,33)( 7,21,24, 9,35,13,14,12,31)$ |
| 9A4 | $9^{4}$ | $56$ | $9$ | $32$ | $( 1,19, 2,10,30, 3,34,29,26)( 4,22,27,16,32,25,20, 6,36)( 5,23,18,17,33,28, 8,15,11)( 7,24,35,14,31,21, 9,13,12)$ |
Malle's constant $a(G)$: $1/16$
Character table
| 1A | 2A | 3A | 7A1 | 7A2 | 7A3 | 9A1 | 9A2 | 9A4 | ||
| Size | 1 | 63 | 56 | 72 | 72 | 72 | 56 | 56 | 56 | |
| 2 P | 1A | 1A | 3A | 7A2 | 7A3 | 7A1 | 9A2 | 9A4 | 9A1 | |
| 3 P | 1A | 2A | 1A | 7A3 | 7A1 | 7A2 | 3A | 3A | 3A | |
| 7 P | 1A | 2A | 3A | 1A | 1A | 1A | 9A2 | 9A4 | 9A1 | |
| Type | ||||||||||
| 504.156.1a | R | |||||||||
| 504.156.7a | R | |||||||||
| 504.156.7b1 | R | |||||||||
| 504.156.7b2 | R | |||||||||
| 504.156.7b3 | R | |||||||||
| 504.156.8a | R | |||||||||
| 504.156.9a1 | R | |||||||||
| 504.156.9a2 | R | |||||||||
| 504.156.9a3 | R |
Regular extensions
Data not computed