Group action invariants
| Degree $n$ : | $36$ | |
| Transitive number $t$ : | $6815$ | |
| Group : | $\PSU(3,3)$ | |
| Parity: | $1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (4,5,6)(7,8,9)(10,12,11)(13,15,14)(16,17,18)(19,21,20)(22,23,24)(25,27,29)(26,28,30)(31,35,34)(32,36,33), (5,6)(8,9)(10,11)(13,14)(17,18)(19,20)(23,24)(27,29)(28,30)(31,33)(32,34)(35,36), (3,5,4,6)(7,12)(8,10,11,9)(13,14)(16,21)(17,19,20,18)(23,24)(25,35,26,36)(27,32,33,30)(28,31,34,29), (1,2,22,15)(3,17,26,11,4,20,25,8)(5,18,36,10,6,19,35,9)(7,24,12,23)(13,16,14,21)(27,31,32,28,33,29,30,34) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
NoneResolvents shown for degrees $\leq 10$
Subfields
Degree 2: None
Degree 3: None
Degree 4: None
Degree 6: None
Degree 9: None
Degree 12: None
Degree 18: None
Low degree siblings
There are no siblings with degree $\leq 10$
Data on whether or not a number field with this Galois group has arithmetically equivalent fields has not been computed.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $63$ | $2$ | $( 5, 6)( 8, 9)(10,11)(13,14)(17,18)(19,20)(23,24)(27,29)(28,30)(31,33)(32,34) (35,36)$ |
| $ 4, 4, 4, 4, 4, 4, 2, 2, 2, 2, 1, 1, 1, 1 $ | $378$ | $4$ | $( 1,16)( 3, 4)( 5,23, 6,24)( 8,34, 9,32)(10,28,11,30)(12,15)(13,35,14,36) (17,19,18,20)(25,26)(27,33,29,31)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $56$ | $3$ | $( 1, 7, 4)( 2, 3,16)( 5,27,32)( 6,29,34)( 8,35,20)( 9,36,19)(10,14,33) (11,13,31)(12,21,26)(15,22,25)(17,30,24)(18,28,23)$ |
| $ 4, 4, 4, 4, 4, 4, 2, 2, 2, 2, 2, 2 $ | $63$ | $4$ | $( 1,16)( 2, 7)( 3, 4)( 5,36, 6,35)( 8,32, 9,34)(10,28,11,30)(12,15) (13,24,14,23)(17,33,18,31)(19,29,20,27)(21,22)(25,26)$ |
| $ 4, 4, 4, 4, 4, 4, 2, 2, 2, 2, 2, 2 $ | $63$ | $4$ | $( 1,16)( 2, 7)( 3, 4)( 5,35, 6,36)( 8,34, 9,32)(10,30,11,28)(12,15) (13,23,14,24)(17,31,18,33)(19,27,20,29)(21,22)(25,26)$ |
| $ 6, 6, 6, 6, 3, 3, 3, 3 $ | $504$ | $6$ | $( 1, 4, 7)( 2,16, 3)( 5,34,27, 6,32,29)( 8,19,35, 9,20,36)(10,31,14,11,33,13) (12,26,21)(15,25,22)(17,23,30,18,24,28)$ |
| $ 12, 12, 6, 6 $ | $504$ | $12$ | $( 1, 2, 4,16, 7, 3)( 5,20,34,36,27, 8, 6,19,32,35,29, 9)(10,24,31,28,14,17,11, 23,33,30,13,18)(12,22,26,15,21,25)$ |
| $ 12, 12, 6, 6 $ | $504$ | $12$ | $( 1, 2, 4,16, 7, 3)( 5,19,34,35,27, 9, 6,20,32,36,29, 8)(10,23,31,30,14,18,11, 24,33,28,13,17)(12,22,26,15,21,25)$ |
| $ 7, 7, 7, 7, 7, 1 $ | $864$ | $7$ | $( 1,33,19,35,28,26,24)( 2, 6,36,22,20,11,17)( 3,21, 9, 7,25,27,31) ( 4,30, 5,18,29,15,14)( 8,23,34,16,12,32,13)$ |
| $ 7, 7, 7, 7, 7, 1 $ | $864$ | $7$ | $( 1,24,26,28,35,19,33)( 2,17,11,20,22,36, 6)( 3,31,27,25, 7, 9,21) ( 4,14,15,29,18, 5,30)( 8,13,32,12,16,34,23)$ |
| $ 8, 8, 8, 4, 4, 4 $ | $756$ | $8$ | $( 1,13, 8,23,34,16, 4, 7)( 2,31, 3,11,29,15,19,35)( 5,18,17,28,26,36,10,22) ( 6,24,25,27)( 9,30,20,21)(12,32,33,14)$ |
| $ 8, 8, 8, 4, 4, 4 $ | $756$ | $8$ | $( 1, 7, 4,16,34,23, 8,13)( 2,35,19,15,29,11, 3,31)( 5,22,10,36,26,28,17,18) ( 6,27,25,24)( 9,21,20,30)(12,14,33,32)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1 $ | $672$ | $3$ | $( 1,23,17)( 2,11,14)( 3,13,34)( 4,27,22)( 5,15,33)( 6,28,24)( 7,19,26) ( 9,18,31)(10,21,36)(12,16,30)(25,32,35)$ |
Group invariants
| Order: | $6048=2^{5} \cdot 3^{3} \cdot 7$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | Data not available |
| Character table: |
2 5 . 2 5 5 5 2 2 2 . . 4 3 3
3 3 2 3 1 1 1 1 1 1 . . . . .
7 1 . . . . . . . . 1 1 . . .
1a 3a 3b 2a 4a 4b 6a 12a 12b 7a 7b 4c 8a 8b
2P 1a 3a 3b 1a 2a 2a 3b 6a 6a 7a 7b 2a 4b 4a
3P 1a 1a 1a 2a 4b 4a 2a 4a 4b 7b 7a 4c 8b 8a
5P 1a 3a 3b 2a 4a 4b 6a 12a 12b 7b 7a 4c 8a 8b
7P 1a 3a 3b 2a 4b 4a 6a 12b 12a 1a 1a 4c 8b 8a
11P 1a 3a 3b 2a 4b 4a 6a 12b 12a 7a 7b 4c 8b 8a
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 6 . -3 -2 -2 -2 1 1 1 -1 -1 2 . .
X.3 7 1 -2 -1 3 3 2 . . . . -1 -1 -1
X.4 7 1 -2 3 A /A . D /D . . 1 E -E
X.5 7 1 -2 3 /A A . /D D . . 1 -E E
X.6 14 -1 5 -2 2 2 1 -1 -1 . . 2 . .
X.7 21 . 3 5 1 1 -1 1 1 . . 1 -1 -1
X.8 21 . 3 1 B /B 1 E -E . . -1 -E E
X.9 21 . 3 1 /B B 1 -E E . . -1 E -E
X.10 27 . . 3 3 3 . . . -1 -1 -1 1 1
X.11 28 1 1 -4 C -C -1 -E E . . . . .
X.12 28 1 1 -4 -C C -1 E -E . . . . .
X.13 32 -1 -4 . . . . . . F /F . . .
X.14 32 -1 -4 . . . . . . /F F . . .
A = -1-2*E(4)
= -1-2*Sqrt(-1) = -1-2i
B = -3-2*E(4)
= -3-2*Sqrt(-1) = -3-2i
C = -4*E(4)
= -4*Sqrt(-1) = -4i
D = -1-E(4)
= -1-Sqrt(-1) = -1-i
E = -E(4)
= -Sqrt(-1) = -i
F = -E(7)-E(7)^2-E(7)^4
= (1-Sqrt(-7))/2 = -b7
|