Show commands:
Magma
magma: G := TransitiveGroup(36, 5);
Group action invariants
Degree $n$: | $36$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $5$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $C_3:C_{12}$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $36$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,19,27,6,16,31,2,20,28,5,15,32)(3,17,26,7,13,29,4,18,25,8,14,30)(9,24,33,12,22,35,10,23,34,11,21,36), (1,17,22)(2,18,21)(3,20,23)(4,19,24)(5,11,26)(6,12,25)(7,10,27)(8,9,28)(13,32,36)(14,31,35)(15,30,33)(16,29,34) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $3$: $C_3$ $4$: $C_4$ $6$: $S_3$, $C_6$ $12$: $C_{12}$, $C_3 : C_4$ $18$: $S_3\times C_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $C_4$
Degree 6: $C_6$, $S_3$, $S_3\times C_3$
Degree 9: $S_3\times C_3$
Degree 12: $C_{12}$, $C_3 : C_4$, $C_3\times (C_3 : C_4)$
Degree 18: $S_3 \times C_3$
Low degree siblings
12T19Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{36}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{18}$ | $1$ | $2$ | $18$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)$ |
3A1 | $3^{12}$ | $1$ | $3$ | $24$ | $( 1,16,28)( 2,15,27)( 3,13,25)( 4,14,26)( 5,19,31)( 6,20,32)( 7,18,30)( 8,17,29)( 9,22,34)(10,21,33)(11,24,35)(12,23,36)$ |
3A-1 | $3^{12}$ | $1$ | $3$ | $24$ | $( 1,28,16)( 2,27,15)( 3,25,13)( 4,26,14)( 5,31,19)( 6,32,20)( 7,30,18)( 8,29,17)( 9,34,22)(10,33,21)(11,35,24)(12,36,23)$ |
3B | $3^{12}$ | $2$ | $3$ | $24$ | $( 1,29, 9)( 2,30,10)( 3,32,12)( 4,31,11)( 5,24,14)( 6,23,13)( 7,21,15)( 8,22,16)(17,34,28)(18,33,27)(19,35,26)(20,36,25)$ |
3C1 | $3^{12}$ | $2$ | $3$ | $24$ | $( 1, 8,34)( 2, 7,33)( 3, 6,36)( 4, 5,35)( 9,16,17)(10,15,18)(11,14,19)(12,13,20)(21,27,30)(22,28,29)(23,25,32)(24,26,31)$ |
3C-1 | $3^{12}$ | $2$ | $3$ | $24$ | $( 1,17,22)( 2,18,21)( 3,20,23)( 4,19,24)( 5,11,26)( 6,12,25)( 7,10,27)( 8, 9,28)(13,32,36)(14,31,35)(15,30,33)(16,29,34)$ |
4A1 | $4^{9}$ | $3$ | $4$ | $27$ | $( 1, 6, 2, 5)( 3, 7, 4, 8)( 9,12,10,11)(13,18,14,17)(15,19,16,20)(21,24,22,23)(25,30,26,29)(27,31,28,32)(33,35,34,36)$ |
4A-1 | $4^{9}$ | $3$ | $4$ | $27$ | $( 1, 5, 2, 6)( 3, 8, 4, 7)( 9,11,10,12)(13,17,14,18)(15,20,16,19)(21,23,22,24)(25,29,26,30)(27,32,28,31)(33,36,34,35)$ |
6A1 | $6^{6}$ | $1$ | $6$ | $30$ | $( 1,27,16, 2,28,15)( 3,26,13, 4,25,14)( 5,32,19, 6,31,20)( 7,29,18, 8,30,17)( 9,33,22,10,34,21)(11,36,24,12,35,23)$ |
6A-1 | $6^{6}$ | $1$ | $6$ | $30$ | $( 1,15,28, 2,16,27)( 3,14,25, 4,13,26)( 5,20,31, 6,19,32)( 7,17,30, 8,18,29)( 9,21,34,10,22,33)(11,23,35,12,24,36)$ |
6B | $6^{6}$ | $2$ | $6$ | $30$ | $( 1, 7,34, 2, 8,33)( 3, 5,36, 4, 6,35)( 9,15,17,10,16,18)(11,13,19,12,14,20)(21,28,30,22,27,29)(23,26,32,24,25,31)$ |
6C1 | $6^{6}$ | $2$ | $6$ | $30$ | $( 1,30, 9, 2,29,10)( 3,31,12, 4,32,11)( 5,23,14, 6,24,13)( 7,22,15, 8,21,16)(17,33,28,18,34,27)(19,36,26,20,35,25)$ |
6C-1 | $6^{6}$ | $2$ | $6$ | $30$ | $( 1,18,22, 2,17,21)( 3,19,23, 4,20,24)( 5,12,26, 6,11,25)( 7, 9,27, 8,10,28)(13,31,36,14,32,35)(15,29,33,16,30,34)$ |
12A1 | $12^{3}$ | $3$ | $12$ | $33$ | $( 1,19,27, 6,16,31, 2,20,28, 5,15,32)( 3,17,26, 7,13,29, 4,18,25, 8,14,30)( 9,24,33,12,22,35,10,23,34,11,21,36)$ |
12A-1 | $12^{3}$ | $3$ | $12$ | $33$ | $( 1,20,27, 5,16,32, 2,19,28, 6,15,31)( 3,18,26, 8,13,30, 4,17,25, 7,14,29)( 9,23,33,11,22,36,10,24,34,12,21,35)$ |
12A5 | $12^{3}$ | $3$ | $12$ | $33$ | $( 1,32,15, 5,28,20, 2,31,16, 6,27,19)( 3,30,14, 8,25,18, 4,29,13, 7,26,17)( 9,36,21,11,34,23,10,35,22,12,33,24)$ |
12A-5 | $12^{3}$ | $3$ | $12$ | $33$ | $( 1,31,15, 6,28,19, 2,32,16, 5,27,20)( 3,29,14, 7,25,17, 4,30,13, 8,26,18)( 9,35,21,12,34,24,10,36,22,11,33,23)$ |
Malle's constant $a(G)$: $1/18$
magma: ConjugacyClasses(G);
Group invariants
Order: | $36=2^{2} \cdot 3^{2}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 36.6 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 3A1 | 3A-1 | 3B | 3C1 | 3C-1 | 4A1 | 4A-1 | 6A1 | 6A-1 | 6B | 6C1 | 6C-1 | 12A1 | 12A-1 | 12A5 | 12A-5 | ||
Size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | |
2 P | 1A | 1A | 3A-1 | 3A1 | 3C1 | 3B | 3C-1 | 2A | 2A | 3A1 | 3A-1 | 3B | 3C1 | 3C-1 | 6A1 | 6A1 | 6A-1 | 6A-1 | |
3 P | 1A | 2A | 1A | 1A | 1A | 1A | 1A | 4A-1 | 4A1 | 2A | 2A | 2A | 2A | 2A | 4A1 | 4A-1 | 4A-1 | 4A1 | |
Type | |||||||||||||||||||
36.6.1a | R | ||||||||||||||||||
36.6.1b | R | ||||||||||||||||||
36.6.1c1 | C | ||||||||||||||||||
36.6.1c2 | C | ||||||||||||||||||
36.6.1d1 | C | ||||||||||||||||||
36.6.1d2 | C | ||||||||||||||||||
36.6.1e1 | C | ||||||||||||||||||
36.6.1e2 | C | ||||||||||||||||||
36.6.1f1 | C | ||||||||||||||||||
36.6.1f2 | C | ||||||||||||||||||
36.6.1f3 | C | ||||||||||||||||||
36.6.1f4 | C | ||||||||||||||||||
36.6.2a | R | ||||||||||||||||||
36.6.2b | S | ||||||||||||||||||
36.6.2c1 | C | ||||||||||||||||||
36.6.2c2 | C | ||||||||||||||||||
36.6.2d1 | C | ||||||||||||||||||
36.6.2d2 | C |
magma: CharacterTable(G);