Show commands:
Magma
magma: G := TransitiveGroup(36, 48);
Group action invariants
Degree $n$: | $36$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $48$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $C_2\times D_{18}$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $4$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,4)(2,3)(5,36)(6,35)(7,34)(8,33)(9,29)(10,30)(11,32)(12,31)(13,26)(14,25)(15,27)(16,28)(17,23)(18,24)(19,21)(20,22), (1,29,24,13,5,35,25,17,10,3,31,22,16,7,33,27,19,11)(2,30,23,14,6,36,26,18,9,4,32,21,15,8,34,28,20,12), (1,19)(2,20)(3,17)(4,18)(5,16)(6,15)(7,13)(8,14)(21,36)(22,35)(23,34)(24,33)(25,31)(26,32)(27,29)(28,30) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $6$: $S_3$ $8$: $C_2^3$ $12$: $D_{6}$ x 3 $18$: $D_{9}$ $24$: $S_3 \times C_2^2$ $36$: $D_{18}$ x 3 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 3: $S_3$
Degree 4: $C_2^2$
Degree 6: $D_{6}$ x 3
Degree 9: $D_{9}$
Degree 12: $S_3 \times C_2^2$
Degree 18: $D_{18}$ x 3
Low degree siblings
36T48 x 3Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{36}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{18}$ | $1$ | $2$ | $18$ | $( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,12)(10,11)(13,16)(14,15)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)$ |
2B | $2^{18}$ | $1$ | $2$ | $18$ | $( 1, 4)( 2, 3)( 5, 8)( 6, 7)( 9,11)(10,12)(13,15)(14,16)(17,20)(18,19)(21,24)(22,23)(25,28)(26,27)(29,32)(30,31)(33,36)(34,35)$ |
2C | $2^{18}$ | $1$ | $2$ | $18$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)$ |
2D | $2^{18}$ | $9$ | $2$ | $18$ | $( 1, 7)( 2, 8)( 3, 5)( 4, 6)( 9,36)(10,35)(11,33)(12,34)(13,31)(14,32)(15,30)(16,29)(17,25)(18,26)(19,27)(20,28)(21,23)(22,24)$ |
2E | $2^{18}$ | $9$ | $2$ | $18$ | $( 1, 4)( 2, 3)( 5,36)( 6,35)( 7,34)( 8,33)( 9,29)(10,30)(11,32)(12,31)(13,26)(14,25)(15,27)(16,28)(17,23)(18,24)(19,21)(20,22)$ |
2F | $2^{16},1^{4}$ | $9$ | $2$ | $16$ | $( 5,33)( 6,34)( 7,35)( 8,36)( 9,32)(10,31)(11,29)(12,30)(13,27)(14,28)(15,26)(16,25)(17,22)(18,21)(19,24)(20,23)$ |
2G | $2^{18}$ | $9$ | $2$ | $18$ | $( 1, 6)( 2, 5)( 3, 8)( 4, 7)( 9,33)(10,34)(11,36)(12,35)(13,30)(14,29)(15,31)(16,32)(17,28)(18,27)(19,26)(20,25)(21,22)(23,24)$ |
3A | $3^{12}$ | $2$ | $3$ | $24$ | $( 1,16,25)( 2,15,26)( 3,13,27)( 4,14,28)( 5,19,31)( 6,20,32)( 7,17,29)( 8,18,30)( 9,23,34)(10,24,33)(11,22,35)(12,21,36)$ |
6A | $6^{6}$ | $2$ | $6$ | $30$ | $( 1,26,16, 2,25,15)( 3,28,13, 4,27,14)( 5,32,19, 6,31,20)( 7,30,17, 8,29,18)( 9,33,23,10,34,24)(11,36,22,12,35,21)$ |
6B | $6^{6}$ | $2$ | $6$ | $30$ | $( 1,27,16, 3,25,13)( 2,28,15, 4,26,14)( 5,29,19, 7,31,17)( 6,30,20, 8,32,18)( 9,36,23,12,34,21)(10,35,24,11,33,22)$ |
6C | $6^{6}$ | $2$ | $6$ | $30$ | $( 1,14,25, 4,16,28)( 2,13,26, 3,15,27)( 5,18,31, 8,19,30)( 6,17,32, 7,20,29)( 9,22,34,11,23,35)(10,21,33,12,24,36)$ |
9A1 | $9^{4}$ | $2$ | $9$ | $32$ | $( 1,31,24,16, 5,33,25,19,10)( 2,32,23,15, 6,34,26,20, 9)( 3,29,22,13, 7,35,27,17,11)( 4,30,21,14, 8,36,28,18,12)$ |
9A2 | $9^{4}$ | $2$ | $9$ | $32$ | $( 1,19,33,16,31,10,25, 5,24)( 2,20,34,15,32, 9,26, 6,23)( 3,17,35,13,29,11,27, 7,22)( 4,18,36,14,30,12,28, 8,21)$ |
9A4 | $9^{4}$ | $2$ | $9$ | $32$ | $( 1, 5,10,16,19,24,25,31,33)( 2, 6, 9,15,20,23,26,32,34)( 3, 7,11,13,17,22,27,29,35)( 4, 8,12,14,18,21,28,30,36)$ |
18A1 | $18^{2}$ | $2$ | $18$ | $34$ | $( 1,23, 5,26,10,32,16,34,19, 2,24, 6,25, 9,31,15,33,20)( 3,21, 7,28,11,30,13,36,17, 4,22, 8,27,12,29,14,35,18)$ |
18A5 | $18^{2}$ | $2$ | $18$ | $34$ | $( 1,35,31,27,24,17,16,11, 5, 3,33,29,25,22,19,13,10, 7)( 2,36,32,28,23,18,15,12, 6, 4,34,30,26,21,20,14, 9, 8)$ |
18A7 | $18^{2}$ | $2$ | $18$ | $34$ | $( 1,11,19,27,33, 7,16,22,31, 3,10,17,25,35, 5,13,24,29)( 2,12,20,28,34, 8,15,21,32, 4, 9,18,26,36, 6,14,23,30)$ |
18B1 | $18^{2}$ | $2$ | $18$ | $34$ | $( 1,30,24,14, 5,36,25,18,10, 4,31,21,16, 8,33,28,19,12)( 2,29,23,13, 6,35,26,17, 9, 3,32,22,15, 7,34,27,20,11)$ |
18B5 | $18^{2}$ | $2$ | $18$ | $34$ | $( 1,22, 5,27,10,29,16,35,19, 3,24, 7,25,11,31,13,33,17)( 2,21, 6,28, 9,30,15,36,20, 4,23, 8,26,12,32,14,34,18)$ |
18B7 | $18^{2}$ | $2$ | $18$ | $34$ | $( 1, 8,10,14,19,21,25,30,33, 4, 5,12,16,18,24,28,31,36)( 2, 7, 9,13,20,22,26,29,34, 3, 6,11,15,17,23,27,32,35)$ |
18C1 | $18^{2}$ | $2$ | $18$ | $34$ | $( 1,34,31,26,24,20,16, 9, 5, 2,33,32,25,23,19,15,10, 6)( 3,36,29,28,22,18,13,12, 7, 4,35,30,27,21,17,14,11, 8)$ |
18C5 | $18^{2}$ | $2$ | $18$ | $34$ | $( 1,18,33,14,31,12,25, 8,24, 4,19,36,16,30,10,28, 5,21)( 2,17,34,13,32,11,26, 7,23, 3,20,35,15,29, 9,27, 6,22)$ |
18C7 | $18^{2}$ | $2$ | $18$ | $34$ | $( 1, 9,19,26,33, 6,16,23,31, 2,10,20,25,34, 5,15,24,32)( 3,12,17,28,35, 8,13,21,29, 4,11,18,27,36, 7,14,22,30)$ |
Malle's constant $a(G)$: $1/16$
magma: ConjugacyClasses(G);
Group invariants
Order: | $72=2^{3} \cdot 3^{2}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 72.17 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A | 6A | 6B | 6C | 9A1 | 9A2 | 9A4 | 18A1 | 18A5 | 18A7 | 18B1 | 18B5 | 18B7 | 18C1 | 18C5 | 18C7 | ||
Size | 1 | 1 | 1 | 1 | 9 | 9 | 9 | 9 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
2 P | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 3A | 3A | 3A | 3A | 9A2 | 9A4 | 9A1 | 9A4 | 9A1 | 9A2 | 9A2 | 9A4 | 9A1 | 9A1 | 9A4 | 9A2 | |
3 P | 1A | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 1A | 2C | 2A | 2B | 3A | 3A | 3A | 6C | 6A | 6A | 6B | 6A | 6B | 6C | 6B | 6C | |
Type | |||||||||||||||||||||||||
72.17.1a | R | ||||||||||||||||||||||||
72.17.1b | R | ||||||||||||||||||||||||
72.17.1c | R | ||||||||||||||||||||||||
72.17.1d | R | ||||||||||||||||||||||||
72.17.1e | R | ||||||||||||||||||||||||
72.17.1f | R | ||||||||||||||||||||||||
72.17.1g | R | ||||||||||||||||||||||||
72.17.1h | R | ||||||||||||||||||||||||
72.17.2a | R | ||||||||||||||||||||||||
72.17.2b | R | ||||||||||||||||||||||||
72.17.2c | R | ||||||||||||||||||||||||
72.17.2d | R | ||||||||||||||||||||||||
72.17.2e1 | R | ||||||||||||||||||||||||
72.17.2e2 | R | ||||||||||||||||||||||||
72.17.2e3 | R | ||||||||||||||||||||||||
72.17.2f1 | R | ||||||||||||||||||||||||
72.17.2f2 | R | ||||||||||||||||||||||||
72.17.2f3 | R | ||||||||||||||||||||||||
72.17.2g1 | R | ||||||||||||||||||||||||
72.17.2g2 | R | ||||||||||||||||||||||||
72.17.2g3 | R | ||||||||||||||||||||||||
72.17.2h1 | R | ||||||||||||||||||||||||
72.17.2h2 | R | ||||||||||||||||||||||||
72.17.2h3 | R |
magma: CharacterTable(G);