Show commands:
Magma
magma: G := TransitiveGroup(36, 47);
Group action invariants
Degree $n$: | $36$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $47$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $D_{36}$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $2$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,7)(2,8)(3,6)(4,5)(9,36)(10,35)(11,33)(12,34)(13,31)(14,32)(15,30)(16,29)(17,25)(18,26)(19,27)(20,28)(21,23)(22,24), (1,36,31,28,24,18,16,12,5,4,34,29,26,22,20,13,9,7,2,35,32,27,23,17,15,11,6,3,33,30,25,21,19,14,10,8) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $6$: $S_3$ $8$: $D_{4}$ $12$: $D_{6}$ $18$: $D_{9}$ $24$: $D_{12}$ $36$: $D_{18}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 4: $D_{4}$
Degree 6: $D_{6}$
Degree 9: $D_{9}$
Degree 12: $D_{12}$
Degree 18: $D_{18}$
Low degree siblings
36T47Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{36}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{18}$ | $1$ | $2$ | $18$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)$ |
2B | $2^{17},1^{2}$ | $18$ | $2$ | $17$ | $( 1,32)( 2,31)( 3,30)( 4,29)( 5,26)( 6,25)( 7,28)( 8,27)( 9,24)(10,23)(11,21)(12,22)(13,18)(14,17)(15,19)(16,20)(35,36)$ |
2C | $2^{18}$ | $18$ | $2$ | $18$ | $( 1,27)( 2,28)( 3,25)( 4,26)( 5,22)( 6,21)( 7,24)( 8,23)( 9,18)(10,17)(11,19)(12,20)(13,16)(14,15)(29,34)(30,33)(31,35)(32,36)$ |
3A | $3^{12}$ | $2$ | $3$ | $24$ | $( 1,26,15)( 2,25,16)( 3,28,13)( 4,27,14)( 5,32,19)( 6,31,20)( 7,30,18)( 8,29,17)( 9,33,24)(10,34,23)(11,36,22)(12,35,21)$ |
4A | $4^{9}$ | $2$ | $4$ | $27$ | $( 1, 4, 2, 3)( 5, 7, 6, 8)( 9,11,10,12)(13,15,14,16)(17,19,18,20)(21,24,22,23)(25,28,26,27)(29,32,30,31)(33,36,34,35)$ |
6A | $6^{6}$ | $2$ | $6$ | $30$ | $( 1,16,26, 2,15,25)( 3,14,28, 4,13,27)( 5,20,32, 6,19,31)( 7,17,30, 8,18,29)( 9,23,33,10,24,34)(11,21,36,12,22,35)$ |
9A1 | $9^{4}$ | $2$ | $9$ | $32$ | $( 1,24, 5,26, 9,32,15,33,19)( 2,23, 6,25,10,31,16,34,20)( 3,21, 8,28,12,29,13,35,17)( 4,22, 7,27,11,30,14,36,18)$ |
9A2 | $9^{4}$ | $2$ | $9$ | $32$ | $( 1,33,32,26,24,19,15, 9, 5)( 2,34,31,25,23,20,16,10, 6)( 3,35,29,28,21,17,13,12, 8)( 4,36,30,27,22,18,14,11, 7)$ |
9A4 | $9^{4}$ | $2$ | $9$ | $32$ | $( 1, 9,19,26,33, 5,15,24,32)( 2,10,20,25,34, 6,16,23,31)( 3,12,17,28,35, 8,13,21,29)( 4,11,18,27,36, 7,14,22,30)$ |
12A1 | $12^{3}$ | $2$ | $12$ | $33$ | $( 1,14,25, 3,15,27, 2,13,26, 4,16,28)( 5,18,31, 8,19,30, 6,17,32, 7,20,29)( 9,22,34,12,24,36,10,21,33,11,23,35)$ |
12A5 | $12^{3}$ | $2$ | $12$ | $33$ | $( 1,27,16, 3,26,14, 2,28,15, 4,25,13)( 5,30,20, 8,32,18, 6,29,19, 7,31,17)( 9,36,23,12,33,22,10,35,24,11,34,21)$ |
18A1 | $18^{2}$ | $2$ | $18$ | $34$ | $( 1,31,24,16, 5,34,26,20, 9, 2,32,23,15, 6,33,25,19,10)( 3,30,21,14, 8,36,28,18,12, 4,29,22,13, 7,35,27,17,11)$ |
18A5 | $18^{2}$ | $2$ | $18$ | $34$ | $( 1, 6, 9,16,19,23,26,31,33, 2, 5,10,15,20,24,25,32,34)( 3, 7,12,14,17,22,28,30,35, 4, 8,11,13,18,21,27,29,36)$ |
18A7 | $18^{2}$ | $2$ | $18$ | $34$ | $( 1,20,33,16,32,10,26, 6,24, 2,19,34,15,31, 9,25, 5,23)( 3,18,35,14,29,11,28, 7,21, 4,17,36,13,30,12,27, 8,22)$ |
36A1 | $36$ | $2$ | $36$ | $35$ | $( 1,11,20,28,33, 7,16,21,32, 4,10,17,26,36, 6,13,24,30, 2,12,19,27,34, 8,15,22,31, 3, 9,18,25,35, 5,14,23,29)$ |
36A5 | $36$ | $2$ | $36$ | $35$ | $( 1, 7,10,13,19,22,25,29,33, 4, 6,12,15,18,23,28,32,36, 2, 8, 9,14,20,21,26,30,34, 3, 5,11,16,17,24,27,31,35)$ |
36A7 | $36$ | $2$ | $36$ | $35$ | $( 1,18,34,13,32,11,25, 8,24, 4,20,35,15,30,10,28, 5,22, 2,17,33,14,31,12,26, 7,23, 3,19,36,16,29, 9,27, 6,21)$ |
36A11 | $36$ | $2$ | $36$ | $35$ | $( 1,22, 6,28, 9,30,16,35,19, 4,23, 8,26,11,31,13,33,18, 2,21, 5,27,10,29,15,36,20, 3,24, 7,25,12,32,14,34,17)$ |
36A13 | $36$ | $2$ | $36$ | $35$ | $( 1,36,31,28,24,18,16,12, 5, 4,34,29,26,22,20,13, 9, 7, 2,35,32,27,23,17,15,11, 6, 3,33,30,25,21,19,14,10, 8)$ |
36A17 | $36$ | $2$ | $36$ | $35$ | $( 1,30,23,13, 5,36,25,17, 9, 4,31,21,15, 7,34,28,19,11, 2,29,24,14, 6,35,26,18,10, 3,32,22,16, 8,33,27,20,12)$ |
Malle's constant $a(G)$: $1/17$
magma: ConjugacyClasses(G);
Group invariants
Order: | $72=2^{3} \cdot 3^{2}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 72.6 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 2B | 2C | 3A | 4A | 6A | 9A1 | 9A2 | 9A4 | 12A1 | 12A5 | 18A1 | 18A5 | 18A7 | 36A1 | 36A5 | 36A7 | 36A11 | 36A13 | 36A17 | ||
Size | 1 | 1 | 18 | 18 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
2 P | 1A | 1A | 1A | 1A | 3A | 2A | 3A | 9A2 | 9A4 | 9A1 | 6A | 6A | 9A1 | 9A4 | 9A2 | 18A7 | 18A1 | 18A5 | 18A5 | 18A1 | 18A7 | |
3 P | 1A | 2A | 2B | 2C | 1A | 4A | 2A | 3A | 3A | 3A | 4A | 4A | 6A | 6A | 6A | 12A1 | 12A5 | 12A5 | 12A1 | 12A1 | 12A5 | |
Type | ||||||||||||||||||||||
72.6.1a | R | |||||||||||||||||||||
72.6.1b | R | |||||||||||||||||||||
72.6.1c | R | |||||||||||||||||||||
72.6.1d | R | |||||||||||||||||||||
72.6.2a | R | |||||||||||||||||||||
72.6.2b | R | |||||||||||||||||||||
72.6.2c | R | |||||||||||||||||||||
72.6.2d1 | R | |||||||||||||||||||||
72.6.2d2 | R | |||||||||||||||||||||
72.6.2e1 | R | |||||||||||||||||||||
72.6.2e2 | R | |||||||||||||||||||||
72.6.2e3 | R | |||||||||||||||||||||
72.6.2f1 | R | |||||||||||||||||||||
72.6.2f2 | R | |||||||||||||||||||||
72.6.2f3 | R | |||||||||||||||||||||
72.6.2g1 | R | |||||||||||||||||||||
72.6.2g2 | R | |||||||||||||||||||||
72.6.2g3 | R | |||||||||||||||||||||
72.6.2g4 | R | |||||||||||||||||||||
72.6.2g5 | R | |||||||||||||||||||||
72.6.2g6 | R |
magma: CharacterTable(G);