Show commands:
Magma
magma: G := TransitiveGroup(36, 45);
Group action invariants
Degree $n$: | $36$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $45$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $C_4\times D_9$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $4$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,18,2,17)(3,19,4,20)(5,14,6,13)(7,16,8,15)(9,11,10,12)(21,33,22,34)(23,35,24,36)(25,29,26,30)(27,31,28,32), (1,23)(2,24)(3,22)(4,21)(5,20)(6,19)(7,17)(8,18)(9,16)(10,15)(11,13)(12,14)(25,33)(26,34)(27,35)(28,36)(29,30)(31,32) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_4$ x 2, $C_2^2$ $6$: $S_3$ $8$: $C_4\times C_2$ $12$: $D_{6}$ $18$: $D_{9}$ $24$: $S_3 \times C_4$ $36$: $D_{18}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 4: $C_4$
Degree 6: $D_{6}$
Degree 9: $D_{9}$
Degree 12: $S_3 \times C_4$
Degree 18: $D_{18}$
Low degree siblings
36T45Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{36}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{18}$ | $1$ | $2$ | $18$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)$ |
2B | $2^{18}$ | $9$ | $2$ | $18$ | $( 1,31)( 2,32)( 3,30)( 4,29)( 5,25)( 6,26)( 7,28)( 8,27)( 9,23)(10,24)(11,21)(12,22)(13,18)(14,17)(15,20)(16,19)(33,34)(35,36)$ |
2C | $2^{16},1^{4}$ | $9$ | $2$ | $16$ | $( 1,24)( 2,23)( 3,21)( 4,22)( 5,19)( 6,20)( 7,18)( 8,17)( 9,15)(10,16)(11,14)(12,13)(25,34)(26,33)(27,36)(28,35)$ |
3A | $3^{12}$ | $2$ | $3$ | $24$ | $( 1,15,26)( 2,16,25)( 3,13,28)( 4,14,27)( 5,19,32)( 6,20,31)( 7,18,30)( 8,17,29)( 9,24,33)(10,23,34)(11,22,36)(12,21,35)$ |
4A1 | $4^{9}$ | $1$ | $4$ | $27$ | $( 1, 4, 2, 3)( 5, 7, 6, 8)( 9,11,10,12)(13,15,14,16)(17,19,18,20)(21,24,22,23)(25,28,26,27)(29,32,30,31)(33,36,34,35)$ |
4A-1 | $4^{9}$ | $1$ | $4$ | $27$ | $( 1, 3, 2, 4)( 5, 8, 6, 7)( 9,12,10,11)(13,16,14,15)(17,20,18,19)(21,23,22,24)(25,27,26,28)(29,31,30,32)(33,35,34,36)$ |
4B1 | $4^{9}$ | $9$ | $4$ | $27$ | $( 1,28, 2,27)( 3,25, 4,26)( 5,21, 6,22)( 7,24, 8,23)( 9,17,10,18)(11,19,12,20)(13,16,14,15)(29,34,30,33)(31,36,32,35)$ |
4B-1 | $4^{9}$ | $9$ | $4$ | $27$ | $( 1,18, 2,17)( 3,19, 4,20)( 5,14, 6,13)( 7,16, 8,15)( 9,11,10,12)(21,33,22,34)(23,35,24,36)(25,29,26,30)(27,31,28,32)$ |
6A | $6^{6}$ | $2$ | $6$ | $30$ | $( 1,25,15, 2,26,16)( 3,27,13, 4,28,14)( 5,31,19, 6,32,20)( 7,29,18, 8,30,17)( 9,34,24,10,33,23)(11,35,22,12,36,21)$ |
9A1 | $9^{4}$ | $2$ | $9$ | $32$ | $( 1,19,33,15,32, 9,26, 5,24)( 2,20,34,16,31,10,25, 6,23)( 3,17,35,13,29,12,28, 8,21)( 4,18,36,14,30,11,27, 7,22)$ |
9A2 | $9^{4}$ | $2$ | $9$ | $32$ | $( 1, 5, 9,15,19,24,26,32,33)( 2, 6,10,16,20,23,25,31,34)( 3, 8,12,13,17,21,28,29,35)( 4, 7,11,14,18,22,27,30,36)$ |
9A4 | $9^{4}$ | $2$ | $9$ | $32$ | $( 1,32,24,15, 5,33,26,19, 9)( 2,31,23,16, 6,34,25,20,10)( 3,29,21,13, 8,35,28,17,12)( 4,30,22,14, 7,36,27,18,11)$ |
12A1 | $12^{3}$ | $2$ | $12$ | $33$ | $( 1,13,25, 4,15,28, 2,14,26, 3,16,27)( 5,17,31, 7,19,29, 6,18,32, 8,20,30)( 9,21,34,11,24,35,10,22,33,12,23,36)$ |
12A-1 | $12^{3}$ | $2$ | $12$ | $33$ | $( 1,14,25, 3,15,27, 2,13,26, 4,16,28)( 5,18,31, 8,19,30, 6,17,32, 7,20,29)( 9,22,34,12,24,36,10,21,33,11,23,35)$ |
18A1 | $18^{2}$ | $2$ | $18$ | $34$ | $( 1,10,19,25,33, 6,15,23,32, 2, 9,20,26,34, 5,16,24,31)( 3,11,17,27,35, 7,13,22,29, 4,12,18,28,36, 8,14,21,30)$ |
18A5 | $18^{2}$ | $2$ | $18$ | $34$ | $( 1,34,32,25,24,20,15,10, 5, 2,33,31,26,23,19,16, 9, 6)( 3,36,29,27,21,18,13,11, 8, 4,35,30,28,22,17,14,12, 7)$ |
18A7 | $18^{2}$ | $2$ | $18$ | $34$ | $( 1,23, 5,25, 9,31,15,34,19, 2,24, 6,26,10,32,16,33,20)( 3,22, 8,27,12,30,13,36,17, 4,21, 7,28,11,29,14,35,18)$ |
36A1 | $36$ | $2$ | $36$ | $35$ | $( 1, 7,10,13,19,22,25,29,33, 4, 6,12,15,18,23,28,32,36, 2, 8, 9,14,20,21,26,30,34, 3, 5,11,16,17,24,27,31,35)$ |
36A-1 | $36$ | $2$ | $36$ | $35$ | $( 1,29,23,14, 5,35,25,18, 9, 3,31,22,15, 8,34,27,19,12, 2,30,24,13, 6,36,26,17,10, 4,32,21,16, 7,33,28,20,11)$ |
36A5 | $36$ | $2$ | $36$ | $35$ | $( 1,18,34,13,32,11,25, 8,24, 4,20,35,15,30,10,28, 5,22, 2,17,33,14,31,12,26, 7,23, 3,19,36,16,29, 9,27, 6,21)$ |
36A-5 | $36$ | $2$ | $36$ | $35$ | $( 1, 8,10,14,19,21,25,30,33, 3, 6,11,15,17,23,27,32,35, 2, 7, 9,13,20,22,26,29,34, 4, 5,12,16,18,24,28,31,36)$ |
36A7 | $36$ | $2$ | $36$ | $35$ | $( 1,17,34,14,32,12,25, 7,24, 3,20,36,15,29,10,27, 5,21, 2,18,33,13,31,11,26, 8,23, 4,19,35,16,30, 9,28, 6,22)$ |
36A-7 | $36$ | $2$ | $36$ | $35$ | $( 1,30,23,13, 5,36,25,17, 9, 4,31,21,15, 7,34,28,19,11, 2,29,24,14, 6,35,26,18,10, 3,32,22,16, 8,33,27,20,12)$ |
Malle's constant $a(G)$: $1/16$
magma: ConjugacyClasses(G);
Group invariants
Order: | $72=2^{3} \cdot 3^{2}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 72.5 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 2B | 2C | 3A | 4A1 | 4A-1 | 4B1 | 4B-1 | 6A | 9A1 | 9A2 | 9A4 | 12A1 | 12A-1 | 18A1 | 18A5 | 18A7 | 36A1 | 36A-1 | 36A5 | 36A-5 | 36A7 | 36A-7 | ||
Size | 1 | 1 | 9 | 9 | 2 | 1 | 1 | 9 | 9 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
2 P | 1A | 1A | 1A | 1A | 3A | 2A | 2A | 2A | 2A | 3A | 9A2 | 9A4 | 9A1 | 6A | 6A | 9A1 | 9A4 | 9A2 | 18A1 | 18A7 | 18A5 | 18A1 | 18A5 | 18A7 | |
3 P | 1A | 2A | 2B | 2C | 1A | 4A-1 | 4A1 | 4B-1 | 4B1 | 2A | 3A | 3A | 3A | 4A1 | 4A-1 | 6A | 6A | 6A | 12A1 | 12A-1 | 12A1 | 12A-1 | 12A-1 | 12A1 | |
Type | |||||||||||||||||||||||||
72.5.1a | R | ||||||||||||||||||||||||
72.5.1b | R | ||||||||||||||||||||||||
72.5.1c | R | ||||||||||||||||||||||||
72.5.1d | R | ||||||||||||||||||||||||
72.5.1e1 | C | ||||||||||||||||||||||||
72.5.1e2 | C | ||||||||||||||||||||||||
72.5.1f1 | C | ||||||||||||||||||||||||
72.5.1f2 | C | ||||||||||||||||||||||||
72.5.2a | R | ||||||||||||||||||||||||
72.5.2b | R | ||||||||||||||||||||||||
72.5.2c1 | C | ||||||||||||||||||||||||
72.5.2c2 | C | ||||||||||||||||||||||||
72.5.2d1 | R | ||||||||||||||||||||||||
72.5.2d2 | R | ||||||||||||||||||||||||
72.5.2d3 | R | ||||||||||||||||||||||||
72.5.2e1 | R | ||||||||||||||||||||||||
72.5.2e2 | R | ||||||||||||||||||||||||
72.5.2e3 | R | ||||||||||||||||||||||||
72.5.2f1 | C | ||||||||||||||||||||||||
72.5.2f2 | C | ||||||||||||||||||||||||
72.5.2f3 | C | ||||||||||||||||||||||||
72.5.2f4 | C | ||||||||||||||||||||||||
72.5.2f5 | C | ||||||||||||||||||||||||
72.5.2f6 | C |
magma: CharacterTable(G);