Show commands: Magma
Group invariants
Abstract group: | $C_{12}:S_3$ |
| |
Order: | $72=2^{3} \cdot 3^{2}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $36$ |
| |
Transitive number $t$: | $41$ |
| |
Parity: | $-1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $4$ |
| |
Generators: | $(1,7)(2,8)(3,5)(4,6)(9,23)(10,24)(11,21)(12,22)(13,31)(14,32)(15,29)(16,30)(17,27)(18,28)(19,26)(20,25)$, $(1,19,21)(2,20,22)(3,18,23)(4,17,24)(5,9,28)(6,10,27)(7,11,26)(8,12,25)(13,31,35)(14,32,36)(15,29,34)(16,30,33)$, $(1,3,2,4)(5,35,6,36)(7,33,8,34)(9,31,10,32)(11,30,12,29)(13,27,14,28)(15,26,16,25)(17,21,18,22)(19,23,20,24)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_4$ x 2, $C_2^2$ $6$: $S_3$ x 4 $8$: $C_4\times C_2$ $12$: $D_{6}$ x 4 $18$: $C_3^2:C_2$ $24$: $S_3 \times C_4$ x 4 $36$: 18T12 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$ x 4
Degree 4: $C_4$
Degree 6: $D_{6}$ x 4
Degree 9: $C_3^2:C_2$
Degree 12: $S_3 \times C_4$ x 4
Degree 18: 18T12
Low degree siblings
36T41Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{36}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{18}$ | $1$ | $2$ | $18$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)$ |
2B | $2^{18}$ | $9$ | $2$ | $18$ | $( 1, 2)( 3, 4)( 5,34)( 6,33)( 7,35)( 8,36)( 9,29)(10,30)(11,31)(12,32)(13,26)(14,25)(15,28)(16,27)(17,23)(18,24)(19,22)(20,21)$ |
2C | $2^{16},1^{4}$ | $9$ | $2$ | $16$ | $( 1,19)( 2,20)( 3,18)( 4,17)( 5,16)( 6,15)( 7,14)( 8,13)( 9,33)(10,34)(11,36)(12,35)(25,31)(26,32)(27,29)(28,30)$ |
3A | $3^{12}$ | $2$ | $3$ | $24$ | $( 1,36, 7)( 2,35, 8)( 3,33, 5)( 4,34, 6)( 9,18,16)(10,17,15)(11,19,14)(12,20,13)(21,32,26)(22,31,25)(23,30,28)(24,29,27)$ |
3B | $3^{12}$ | $2$ | $3$ | $24$ | $( 1,14,26)( 2,13,25)( 3,16,28)( 4,15,27)( 5,18,30)( 6,17,29)( 7,19,32)( 8,20,31)( 9,23,33)(10,24,34)(11,21,36)(12,22,35)$ |
3C | $3^{12}$ | $2$ | $3$ | $24$ | $( 1,32,11)( 2,31,12)( 3,30, 9)( 4,29,10)( 5,23,16)( 6,24,15)( 7,21,14)( 8,22,13)(17,34,27)(18,33,28)(19,36,26)(20,35,25)$ |
3D | $3^{12}$ | $2$ | $3$ | $24$ | $( 1,19,21)( 2,20,22)( 3,18,23)( 4,17,24)( 5, 9,28)( 6,10,27)( 7,11,26)( 8,12,25)(13,31,35)(14,32,36)(15,29,34)(16,30,33)$ |
4A1 | $4^{9}$ | $1$ | $4$ | $27$ | $( 1, 4, 2, 3)( 5, 7, 6, 8)( 9,11,10,12)(13,16,14,15)(17,20,18,19)(21,24,22,23)(25,28,26,27)(29,31,30,32)(33,36,34,35)$ |
4A-1 | $4^{9}$ | $1$ | $4$ | $27$ | $( 1, 3, 2, 4)( 5, 8, 6, 7)( 9,12,10,11)(13,15,14,16)(17,19,18,20)(21,23,22,24)(25,27,26,28)(29,32,30,31)(33,35,34,36)$ |
4B1 | $4^{9}$ | $9$ | $4$ | $27$ | $( 1,28, 2,27)( 3,25, 4,26)( 5,22, 6,21)( 7,23, 8,24)( 9,20,10,19)(11,18,12,17)(13,15,14,16)(29,36,30,35)(31,34,32,33)$ |
4B-1 | $4^{9}$ | $9$ | $4$ | $27$ | $( 1,27, 2,28)( 3,26, 4,25)( 5,21, 6,22)( 7,24, 8,23)( 9,19,10,20)(11,17,12,18)(13,16,14,15)(29,35,30,36)(31,33,32,34)$ |
6A | $6^{6}$ | $2$ | $6$ | $30$ | $( 1, 8,36, 2, 7,35)( 3, 6,33, 4, 5,34)( 9,15,18,10,16,17)(11,13,19,12,14,20)(21,25,32,22,26,31)(23,27,30,24,28,29)$ |
6B | $6^{6}$ | $2$ | $6$ | $30$ | $( 1,25,14, 2,26,13)( 3,27,16, 4,28,15)( 5,29,18, 6,30,17)( 7,31,19, 8,32,20)( 9,34,23,10,33,24)(11,35,21,12,36,22)$ |
6C | $6^{6}$ | $2$ | $6$ | $30$ | $( 1,12,32, 2,11,31)( 3,10,30, 4, 9,29)( 5,15,23, 6,16,24)( 7,13,21, 8,14,22)(17,28,34,18,27,33)(19,25,36,20,26,35)$ |
6D | $6^{6}$ | $2$ | $6$ | $30$ | $( 1,22,19, 2,21,20)( 3,24,18, 4,23,17)( 5,27, 9, 6,28,10)( 7,25,11, 8,26,12)(13,36,31,14,35,32)(15,33,29,16,34,30)$ |
12A1 | $12^{3}$ | $2$ | $12$ | $33$ | $( 1,33, 8, 4,36, 5, 2,34, 7, 3,35, 6)( 9,20,15,11,18,13,10,19,16,12,17,14)(21,30,25,24,32,28,22,29,26,23,31,27)$ |
12A-1 | $12^{3}$ | $2$ | $12$ | $33$ | $( 1,34, 8, 3,36, 6, 2,33, 7, 4,35, 5)( 9,19,15,12,18,14,10,20,16,11,17,13)(21,29,25,23,32,27,22,30,26,24,31,28)$ |
12B1 | $12^{3}$ | $2$ | $12$ | $33$ | $( 1,16,25, 4,14,28, 2,15,26, 3,13,27)( 5,20,29, 7,18,31, 6,19,30, 8,17,32)( 9,22,34,11,23,35,10,21,33,12,24,36)$ |
12B-1 | $12^{3}$ | $2$ | $12$ | $33$ | $( 1,15,25, 3,14,27, 2,16,26, 4,13,28)( 5,19,29, 8,18,32, 6,20,30, 7,17,31)( 9,21,34,12,23,36,10,22,33,11,24,35)$ |
12C1 | $12^{3}$ | $2$ | $12$ | $33$ | $( 1,30,12, 4,32, 9, 2,29,11, 3,31,10)( 5,22,15, 7,23,13, 6,21,16, 8,24,14)(17,36,28,20,34,26,18,35,27,19,33,25)$ |
12C-1 | $12^{3}$ | $2$ | $12$ | $33$ | $( 1,10,31, 3,11,29, 2, 9,32, 4,12,30)( 5,14,24, 8,16,21, 6,13,23, 7,15,22)(17,25,33,19,27,35,18,26,34,20,28,36)$ |
12D1 | $12^{3}$ | $2$ | $12$ | $33$ | $( 1,17,22, 3,19,24, 2,18,21, 4,20,23)( 5,11,27, 8, 9,26, 6,12,28, 7,10,25)(13,30,36,15,31,33,14,29,35,16,32,34)$ |
12D-1 | $12^{3}$ | $2$ | $12$ | $33$ | $( 1,18,22, 4,19,23, 2,17,21, 3,20,24)( 5,12,27, 7, 9,25, 6,11,28, 8,10,26)(13,29,36,16,31,34,14,30,35,15,32,33)$ |
Malle's constant $a(G)$: $1/16$
Character table
1A | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 4A1 | 4A-1 | 4B1 | 4B-1 | 6A | 6B | 6C | 6D | 12A1 | 12A-1 | 12B1 | 12B-1 | 12C1 | 12C-1 | 12D1 | 12D-1 | ||
Size | 1 | 1 | 9 | 9 | 2 | 2 | 2 | 2 | 1 | 1 | 9 | 9 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
2 P | 1A | 1A | 1A | 1A | 3A | 3B | 3C | 3D | 2A | 2A | 2A | 2A | 3A | 3B | 3C | 3D | 6A | 6A | 6B | 6B | 6C | 6C | 6D | 6D | |
3 P | 1A | 2A | 2B | 2C | 1A | 1A | 1A | 1A | 4A-1 | 4A1 | 4B-1 | 4B1 | 2A | 2A | 2A | 2A | 4A1 | 4A-1 | 4A1 | 4A-1 | 4A1 | 4A-1 | 4A-1 | 4A1 | |
Type | |||||||||||||||||||||||||
72.32.1a | R | ||||||||||||||||||||||||
72.32.1b | R | ||||||||||||||||||||||||
72.32.1c | R | ||||||||||||||||||||||||
72.32.1d | R | ||||||||||||||||||||||||
72.32.1e1 | C | ||||||||||||||||||||||||
72.32.1e2 | C | ||||||||||||||||||||||||
72.32.1f1 | C | ||||||||||||||||||||||||
72.32.1f2 | C | ||||||||||||||||||||||||
72.32.2a | R | ||||||||||||||||||||||||
72.32.2b | R | ||||||||||||||||||||||||
72.32.2c | R | ||||||||||||||||||||||||
72.32.2d | R | ||||||||||||||||||||||||
72.32.2e | R | ||||||||||||||||||||||||
72.32.2f | R | ||||||||||||||||||||||||
72.32.2g | R | ||||||||||||||||||||||||
72.32.2h | R | ||||||||||||||||||||||||
72.32.2i1 | C | ||||||||||||||||||||||||
72.32.2i2 | C | ||||||||||||||||||||||||
72.32.2j1 | C | ||||||||||||||||||||||||
72.32.2j2 | C | ||||||||||||||||||||||||
72.32.2k1 | C | ||||||||||||||||||||||||
72.32.2k2 | C | ||||||||||||||||||||||||
72.32.2l1 | C | ||||||||||||||||||||||||
72.32.2l2 | C |
Regular extensions
Data not computed