Show commands: Magma
Group invariants
| Abstract group: | $S_3\times D_6$ |
| |
| Order: | $72=2^{3} \cdot 3^{2}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $36$ |
| |
| Transitive number $t$: | $40$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $12$ |
| |
| Generators: | $(1,35,6,4,33,8)(2,36,5,3,34,7)(9,29,13,22,18,26)(10,30,14,21,17,25)(11,31,16,24,20,27)(12,32,15,23,19,28)$, $(1,34)(2,33)(3,35)(4,36)(5,6)(7,8)(9,14)(10,13)(11,15)(12,16)(17,18)(19,20)(21,26)(22,25)(23,27)(24,28)(29,30)(31,32)$, $(1,9)(2,10)(3,12)(4,11)(5,17)(6,18)(7,19)(8,20)(13,33)(14,34)(15,36)(16,35)(21,28)(22,27)(23,25)(24,26)(29,31)(30,32)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $6$: $S_3$ x 2 $8$: $C_2^3$ $12$: $D_{6}$ x 6 $24$: $S_3 \times C_2^2$ x 2 $36$: $S_3^2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 3: $S_3$ x 2
Degree 4: $C_2^2$
Degree 9: $S_3^2$
Degree 12: $D_6$, $S_3 \times C_2^2$
Low degree siblings
12T37 x 2, 18T29 x 4, 24T73, 36T34 x 2, 36T40 x 3Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{36}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{18}$ | $1$ | $2$ | $18$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)$ |
| 2B | $2^{18}$ | $3$ | $2$ | $18$ | $( 1, 4)( 2, 3)( 5, 7)( 6, 8)( 9,22)(10,21)(11,24)(12,23)(13,26)(14,25)(15,28)(16,27)(17,30)(18,29)(19,32)(20,31)(33,35)(34,36)$ |
| 2C | $2^{18}$ | $3$ | $2$ | $18$ | $( 1,14)( 2,13)( 3,16)( 4,15)( 5,18)( 6,17)( 7,20)( 8,19)( 9,34)(10,33)(11,36)(12,35)(21,24)(22,23)(25,27)(26,28)(29,32)(30,31)$ |
| 2D | $2^{18}$ | $3$ | $2$ | $18$ | $( 1,34)( 2,33)( 3,35)( 4,36)( 5, 6)( 7, 8)( 9,14)(10,13)(11,15)(12,16)(17,18)(19,20)(21,26)(22,25)(23,27)(24,28)(29,30)(31,32)$ |
| 2E | $2^{12},1^{12}$ | $3$ | $2$ | $12$ | $( 1,33)( 2,34)( 3,36)( 4,35)( 9,13)(10,14)(11,16)(12,15)(21,25)(22,26)(23,28)(24,27)$ |
| 2F | $2^{18}$ | $9$ | $2$ | $18$ | $( 1, 8)( 2, 7)( 3, 5)( 4, 6)( 9,22)(10,21)(11,24)(12,23)(13,29)(14,30)(15,32)(16,31)(17,25)(18,26)(19,28)(20,27)(33,35)(34,36)$ |
| 2G | $2^{18}$ | $9$ | $2$ | $18$ | $( 1,32)( 2,31)( 3,29)( 4,30)( 5,27)( 6,28)( 7,26)( 8,25)( 9,12)(10,11)(13,19)(14,20)(15,18)(16,17)(21,35)(22,36)(23,33)(24,34)$ |
| 3A | $3^{12}$ | $2$ | $3$ | $24$ | $( 1,26,16)( 2,25,15)( 3,28,14)( 4,27,13)( 5,30,19)( 6,29,20)( 7,32,17)( 8,31,18)( 9,35,24)(10,36,23)(11,33,22)(12,34,21)$ |
| 3B | $3^{12}$ | $2$ | $3$ | $24$ | $( 1,33, 6)( 2,34, 5)( 3,36, 7)( 4,35, 8)( 9,18,13)(10,17,14)(11,20,16)(12,19,15)(21,30,25)(22,29,26)(23,32,28)(24,31,27)$ |
| 3C | $3^{12}$ | $4$ | $3$ | $24$ | $( 1,22,20)( 2,21,19)( 3,23,17)( 4,24,18)( 5,25,12)( 6,26,11)( 7,28,10)( 8,27, 9)(13,35,31)(14,36,32)(15,34,30)(16,33,29)$ |
| 6A | $6^{6}$ | $2$ | $6$ | $30$ | $( 1,15,26, 2,16,25)( 3,13,28, 4,14,27)( 5,20,30, 6,19,29)( 7,18,32, 8,17,31)( 9,23,35,10,24,36)(11,21,33,12,22,34)$ |
| 6B | $6^{6}$ | $2$ | $6$ | $30$ | $( 1, 5,33, 2, 6,34)( 3, 8,36, 4, 7,35)( 9,14,18,10,13,17)(11,15,20,12,16,19)(21,26,30,22,25,29)(23,27,32,24,28,31)$ |
| 6C | $6^{6}$ | $4$ | $6$ | $30$ | $( 1,19,22, 2,20,21)( 3,18,23, 4,17,24)( 5,11,25, 6,12,26)( 7, 9,28, 8,10,27)(13,32,35,14,31,36)(15,29,34,16,30,33)$ |
| 6D | $6^{6}$ | $6$ | $6$ | $30$ | $( 1,35, 6, 4,33, 8)( 2,36, 5, 3,34, 7)( 9,29,13,22,18,26)(10,30,14,21,17,25)(11,31,16,24,20,27)(12,32,15,23,19,28)$ |
| 6E | $6^{6}$ | $6$ | $6$ | $30$ | $( 1,10, 6,14,33,17)( 2, 9, 5,13,34,18)( 3,11, 7,16,36,20)( 4,12, 8,15,35,19)(21,31,25,24,30,27)(22,32,26,23,29,28)$ |
| 6F | $6^{6}$ | $6$ | $6$ | $30$ | $( 1,21,16,34,26,12)( 2,22,15,33,25,11)( 3,24,14,35,28, 9)( 4,23,13,36,27,10)( 5,29,19, 6,30,20)( 7,31,17, 8,32,18)$ |
| 6G | $6^{4},3^{4}$ | $6$ | $6$ | $28$ | $( 1,11,26,33,16,22)( 2,12,25,34,15,21)( 3,10,28,36,14,23)( 4, 9,27,35,13,24)( 5,19,30)( 6,20,29)( 7,17,32)( 8,18,31)$ |
Malle's constant $a(G)$: $1/12$
Character table
| 1A | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A | 3B | 3C | 6A | 6B | 6C | 6D | 6E | 6F | 6G | ||
| Size | 1 | 1 | 3 | 3 | 3 | 3 | 9 | 9 | 2 | 2 | 4 | 2 | 2 | 4 | 6 | 6 | 6 | 6 | |
| 2 P | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 3A | 3B | 3C | 3A | 3B | 3C | 3B | 3B | 3A | 3A | |
| 3 P | 1A | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 1A | 1A | 1A | 2A | 2A | 2A | 2B | 2C | 2D | 2E | |
| Type | |||||||||||||||||||
| 72.46.1a | R | ||||||||||||||||||
| 72.46.1b | R | ||||||||||||||||||
| 72.46.1c | R | ||||||||||||||||||
| 72.46.1d | R | ||||||||||||||||||
| 72.46.1e | R | ||||||||||||||||||
| 72.46.1f | R | ||||||||||||||||||
| 72.46.1g | R | ||||||||||||||||||
| 72.46.1h | R | ||||||||||||||||||
| 72.46.2a | R | ||||||||||||||||||
| 72.46.2b | R | ||||||||||||||||||
| 72.46.2c | R | ||||||||||||||||||
| 72.46.2d | R | ||||||||||||||||||
| 72.46.2e | R | ||||||||||||||||||
| 72.46.2f | R | ||||||||||||||||||
| 72.46.2g | R | ||||||||||||||||||
| 72.46.2h | R | ||||||||||||||||||
| 72.46.4a | R | ||||||||||||||||||
| 72.46.4b | R |
Regular extensions
Data not computed