Show commands:
Magma
magma: G := TransitiveGroup(36, 40);
Group action invariants
Degree $n$: | $36$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $40$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $S_3\times D_6$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $12$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,35,6,4,33,8)(2,36,5,3,34,7)(9,29,13,22,18,26)(10,30,14,21,17,25)(11,31,16,24,20,27)(12,32,15,23,19,28), (1,34)(2,33)(3,35)(4,36)(5,6)(7,8)(9,14)(10,13)(11,15)(12,16)(17,18)(19,20)(21,26)(22,25)(23,27)(24,28)(29,30)(31,32), (1,9)(2,10)(3,12)(4,11)(5,17)(6,18)(7,19)(8,20)(13,33)(14,34)(15,36)(16,35)(21,28)(22,27)(23,25)(24,26)(29,31)(30,32) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $6$: $S_3$ x 2 $8$: $C_2^3$ $12$: $D_{6}$ x 6 $24$: $S_3 \times C_2^2$ x 2 $36$: $S_3^2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 3: $S_3$ x 2
Degree 4: $C_2^2$
Degree 9: $S_3^2$
Degree 12: $D_6$, $S_3 \times C_2^2$
Low degree siblings
12T37 x 2, 18T29 x 4, 24T73, 36T34 x 2, 36T40 x 3Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{36}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{18}$ | $1$ | $2$ | $18$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)$ |
2B | $2^{18}$ | $3$ | $2$ | $18$ | $( 1, 4)( 2, 3)( 5, 7)( 6, 8)( 9,22)(10,21)(11,24)(12,23)(13,26)(14,25)(15,28)(16,27)(17,30)(18,29)(19,32)(20,31)(33,35)(34,36)$ |
2C | $2^{18}$ | $3$ | $2$ | $18$ | $( 1,28)( 2,27)( 3,26)( 4,25)( 5,31)( 6,32)( 7,29)( 8,30)( 9,12)(10,11)(13,15)(14,16)(17,20)(18,19)(21,35)(22,36)(23,33)(24,34)$ |
2D | $2^{12},1^{12}$ | $3$ | $2$ | $12$ | $( 1,33)( 2,34)( 3,36)( 4,35)( 9,13)(10,14)(11,16)(12,15)(21,25)(22,26)(23,28)(24,27)$ |
2E | $2^{18}$ | $3$ | $2$ | $18$ | $( 1,34)( 2,33)( 3,35)( 4,36)( 5, 6)( 7, 8)( 9,14)(10,13)(11,15)(12,16)(17,18)(19,20)(21,26)(22,25)(23,27)(24,28)(29,30)(31,32)$ |
2F | $2^{18}$ | $9$ | $2$ | $18$ | $( 1,27)( 2,28)( 3,25)( 4,26)( 5,23)( 6,24)( 7,21)( 8,22)( 9,20)(10,19)(11,18)(12,17)(13,16)(14,15)(29,35)(30,36)(31,33)(32,34)$ |
2G | $2^{18}$ | $9$ | $2$ | $18$ | $( 1, 3)( 2, 4)( 5,35)( 6,36)( 7,33)( 8,34)( 9,30)(10,29)(11,32)(12,31)(13,25)(14,26)(15,27)(16,28)(17,22)(18,21)(19,24)(20,23)$ |
3A | $3^{12}$ | $2$ | $3$ | $24$ | $( 1, 6,33)( 2, 5,34)( 3, 7,36)( 4, 8,35)( 9,13,18)(10,14,17)(11,16,20)(12,15,19)(21,25,30)(22,26,29)(23,28,32)(24,27,31)$ |
3B | $3^{12}$ | $2$ | $3$ | $24$ | $( 1,26,16)( 2,25,15)( 3,28,14)( 4,27,13)( 5,30,19)( 6,29,20)( 7,32,17)( 8,31,18)( 9,35,24)(10,36,23)(11,33,22)(12,34,21)$ |
3C | $3^{12}$ | $4$ | $3$ | $24$ | $( 1,29,11)( 2,30,12)( 3,32,10)( 4,31, 9)( 5,21,15)( 6,22,16)( 7,23,14)( 8,24,13)(17,36,28)(18,35,27)(19,34,25)(20,33,26)$ |
6A | $6^{6}$ | $2$ | $6$ | $30$ | $( 1, 5,33, 2, 6,34)( 3, 8,36, 4, 7,35)( 9,14,18,10,13,17)(11,15,20,12,16,19)(21,26,30,22,25,29)(23,27,32,24,28,31)$ |
6B | $6^{6}$ | $2$ | $6$ | $30$ | $( 1,15,26, 2,16,25)( 3,13,28, 4,14,27)( 5,20,30, 6,19,29)( 7,18,32, 8,17,31)( 9,23,35,10,24,36)(11,21,33,12,22,34)$ |
6C | $6^{6}$ | $4$ | $6$ | $30$ | $( 1,19,22, 2,20,21)( 3,18,23, 4,17,24)( 5,11,25, 6,12,26)( 7, 9,28, 8,10,27)(13,32,35,14,31,36)(15,29,34,16,30,33)$ |
6D | $6^{6}$ | $6$ | $6$ | $30$ | $( 1,21,16,34,26,12)( 2,22,15,33,25,11)( 3,24,14,35,28, 9)( 4,23,13,36,27,10)( 5,29,19, 6,30,20)( 7,31,17, 8,32,18)$ |
6E | $6^{6}$ | $6$ | $6$ | $30$ | $( 1,23, 6,28,33,32)( 2,24, 5,27,34,31)( 3,22, 7,26,36,29)( 4,21, 8,25,35,30)( 9,19,13,12,18,15)(10,20,14,11,17,16)$ |
6F | $6^{6}$ | $6$ | $6$ | $30$ | $( 1,35, 6, 4,33, 8)( 2,36, 5, 3,34, 7)( 9,29,13,22,18,26)(10,30,14,21,17,25)(11,31,16,24,20,27)(12,32,15,23,19,28)$ |
6G | $6^{4},3^{4}$ | $6$ | $6$ | $28$ | $( 1,11,26,33,16,22)( 2,12,25,34,15,21)( 3,10,28,36,14,23)( 4, 9,27,35,13,24)( 5,19,30)( 6,20,29)( 7,17,32)( 8,18,31)$ |
Malle's constant $a(G)$: $1/12$
magma: ConjugacyClasses(G);
Group invariants
Order: | $72=2^{3} \cdot 3^{2}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 72.46 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A | 3B | 3C | 6A | 6B | 6C | 6D | 6E | 6F | 6G | ||
Size | 1 | 1 | 3 | 3 | 3 | 3 | 9 | 9 | 2 | 2 | 4 | 2 | 2 | 4 | 6 | 6 | 6 | 6 | |
2 P | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 3A | 3B | 3C | 3A | 3B | 3C | 3B | 3A | 3A | 3B | |
3 P | 1A | 2A | 2D | 2C | 2E | 2B | 2F | 2G | 1A | 1A | 1A | 2A | 2A | 2A | 2B | 2C | 2D | 2E | |
Type | |||||||||||||||||||
72.46.1a | R | ||||||||||||||||||
72.46.1b | R | ||||||||||||||||||
72.46.1c | R | ||||||||||||||||||
72.46.1d | R | ||||||||||||||||||
72.46.1e | R | ||||||||||||||||||
72.46.1f | R | ||||||||||||||||||
72.46.1g | R | ||||||||||||||||||
72.46.1h | R | ||||||||||||||||||
72.46.2a | R | ||||||||||||||||||
72.46.2b | R | ||||||||||||||||||
72.46.2c | R | ||||||||||||||||||
72.46.2d | R | ||||||||||||||||||
72.46.2e | R | ||||||||||||||||||
72.46.2f | R | ||||||||||||||||||
72.46.2g | R | ||||||||||||||||||
72.46.2h | R | ||||||||||||||||||
72.46.4a | R | ||||||||||||||||||
72.46.4b | R |
magma: CharacterTable(G);