Show commands:
Magma
magma: G := TransitiveGroup(36, 39);
Group action invariants
Degree $n$: | $36$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $39$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $D_6:S_3$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $6$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,8,34,4,6,35)(2,7,33,3,5,36)(9,26,18,22,14,29)(10,25,17,21,13,30)(11,27,20,23,15,31)(12,28,19,24,16,32), (1,24,2,23)(3,21,4,22)(5,31,6,32)(7,30,8,29)(9,15,10,16)(11,13,12,14)(17,19,18,20)(25,35,26,36)(27,34,28,33) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $6$: $S_3$ x 2 $8$: $D_{4}$ $12$: $D_{6}$ x 2 $24$: $(C_6\times C_2):C_2$ x 2 $36$: $S_3^2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$ x 2
Degree 4: $D_{4}$
Degree 9: $S_3^2$
Degree 12: $(C_6\times C_2):C_2$, $(C_6\times C_2):C_2$
Degree 18: $S_3^2$
Low degree siblings
24T61, 36T39Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{36}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{18}$ | $1$ | $2$ | $18$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)$ |
2B | $2^{18}$ | $6$ | $2$ | $18$ | $( 1, 4)( 2, 3)( 5, 7)( 6, 8)( 9,22)(10,21)(11,23)(12,24)(13,25)(14,26)(15,27)(16,28)(17,30)(18,29)(19,32)(20,31)(33,36)(34,35)$ |
2C | $2^{15},1^{6}$ | $6$ | $2$ | $15$ | $( 3, 4)( 5,33)( 6,34)( 7,35)( 8,36)( 9,17)(10,18)(11,20)(12,19)(13,14)(21,30)(22,29)(23,32)(24,31)(27,28)$ |
3A | $3^{12}$ | $2$ | $3$ | $24$ | $( 1,34, 6)( 2,33, 5)( 3,36, 7)( 4,35, 8)( 9,18,14)(10,17,13)(11,20,15)(12,19,16)(21,30,25)(22,29,26)(23,31,27)(24,32,28)$ |
3B | $3^{12}$ | $2$ | $3$ | $24$ | $( 1,26,15)( 2,25,16)( 3,28,13)( 4,27,14)( 5,30,19)( 6,29,20)( 7,32,17)( 8,31,18)( 9,35,23)(10,36,24)(11,34,22)(12,33,21)$ |
3C | $3^{12}$ | $4$ | $3$ | $24$ | $( 1,22,20)( 2,21,19)( 3,24,17)( 4,23,18)( 5,25,12)( 6,26,11)( 7,28,10)( 8,27, 9)(13,36,32)(14,35,31)(15,34,29)(16,33,30)$ |
4A | $4^{9}$ | $18$ | $4$ | $27$ | $( 1,36, 2,35)( 3,33, 4,34)( 5, 8, 6, 7)( 9,26,10,25)(11,28,12,27)(13,21,14,22)(15,24,16,23)(17,30,18,29)(19,31,20,32)$ |
6A | $6^{6}$ | $2$ | $6$ | $30$ | $( 1,33, 6, 2,34, 5)( 3,35, 7, 4,36, 8)( 9,17,14,10,18,13)(11,19,15,12,20,16)(21,29,25,22,30,26)(23,32,27,24,31,28)$ |
6B | $6^{6}$ | $2$ | $6$ | $30$ | $( 1,16,26, 2,15,25)( 3,14,28, 4,13,27)( 5,20,30, 6,19,29)( 7,18,32, 8,17,31)( 9,24,35,10,23,36)(11,21,34,12,22,33)$ |
6C | $6^{6}$ | $4$ | $6$ | $30$ | $( 1,12,29, 2,11,30)( 3, 9,32, 4,10,31)( 5,15,21, 6,16,22)( 7,14,24, 8,13,23)(17,27,36,18,28,35)(19,26,33,20,25,34)$ |
6D1 | $6^{6}$ | $6$ | $6$ | $30$ | $( 1, 8,34, 4, 6,35)( 2, 7,33, 3, 5,36)( 9,26,18,22,14,29)(10,25,17,21,13,30)(11,27,20,23,15,31)(12,28,19,24,16,32)$ |
6D-1 | $6^{5},3^{2}$ | $6$ | $6$ | $29$ | $( 1,15,26)( 2,16,25)( 3,14,28, 4,13,27)( 5,12,30,33,19,21)( 6,11,29,34,20,22)( 7, 9,32,35,17,23)( 8,10,31,36,18,24)$ |
6E1 | $6^{6}$ | $6$ | $6$ | $30$ | $( 1,32,34,28, 6,24)( 2,31,33,27, 5,23)( 3,29,36,26, 7,22)( 4,30,35,25, 8,21)( 9,16,18,12,14,19)(10,15,17,11,13,20)$ |
6E-1 | $6^{5},3^{2}$ | $6$ | $6$ | $29$ | $( 1,26,15)( 2,25,16)( 3,27,13, 4,28,14)( 5,21,19,33,30,12)( 6,22,20,34,29,11)( 7,23,17,35,32, 9)( 8,24,18,36,31,10)$ |
Malle's constant $a(G)$: $1/15$
magma: ConjugacyClasses(G);
Group invariants
Order: | $72=2^{3} \cdot 3^{2}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 72.22 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 2B | 2C | 3A | 3B | 3C | 4A | 6A | 6B | 6C | 6D1 | 6D-1 | 6E1 | 6E-1 | ||
Size | 1 | 1 | 6 | 6 | 2 | 2 | 4 | 18 | 2 | 2 | 4 | 6 | 6 | 6 | 6 | |
2 P | 1A | 1A | 1A | 1A | 3A | 3B | 3C | 2A | 3A | 3B | 3C | 3A | 3B | 3A | 3B | |
3 P | 1A | 2A | 2B | 2C | 1A | 1A | 1A | 4A | 2A | 2A | 2A | 2B | 2C | 2B | 2C | |
Type | ||||||||||||||||
72.22.1a | R | |||||||||||||||
72.22.1b | R | |||||||||||||||
72.22.1c | R | |||||||||||||||
72.22.1d | R | |||||||||||||||
72.22.2a | R | |||||||||||||||
72.22.2b | R | |||||||||||||||
72.22.2c | R | |||||||||||||||
72.22.2d | R | |||||||||||||||
72.22.2e | R | |||||||||||||||
72.22.2f1 | C | |||||||||||||||
72.22.2f2 | C | |||||||||||||||
72.22.2g1 | C | |||||||||||||||
72.22.2g2 | C | |||||||||||||||
72.22.4a | R | |||||||||||||||
72.22.4b | S |
magma: CharacterTable(G);