Group action invariants
| Degree $n$ : | $36$ | |
| Transitive number $t$ : | $38$ | |
| Group : | $C_3^2:D_4$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,30,16,5,26,19)(2,29,15,6,25,20)(3,31,14,7,28,17)(4,32,13,8,27,18)(9,36,24,10,35,23)(11,33,21)(12,34,22), (1,7,33,3,5,36,2,8,34,4,6,35)(9,26,17,21,14,30,10,25,18,22,13,29)(11,28,19,23,15,32,12,27,20,24,16,31) | |
| $|\Aut(F/K)|$: | $6$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 6: $S_3$ x 2 8: $D_{4}$ 12: $D_{6}$ x 2 36: $S_3^2$ Resolvents shown for degrees $\leq 10$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$ x 2
Degree 4: $D_{4}$
Degree 9: $S_3^2$
Degree 12: $D_{12}$, $(C_6\times C_2):C_2$
Degree 18: $S_3^2$
Low degree siblings
There are no siblings with degree $\leq 10$
Data on whether or not a number field with this Galois group has arithmetically equivalent fields has not been computed.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $6$ | $2$ | $( 3, 4)( 5,34)( 6,33)( 7,35)( 8,36)( 9,17)(10,18)(11,20)(12,19)(13,14)(21,29) (22,30)(23,32)(24,31)(27,28)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22) (23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $18$ | $2$ | $( 1, 3)( 2, 4)( 5,35)( 6,36)( 7,33)( 8,34)( 9,30)(10,29)(11,31)(12,32)(13,25) (14,26)(15,27)(16,28)(17,21)(18,22)(19,24)(20,23)$ |
| $ 4, 4, 4, 4, 4, 4, 4, 4, 4 $ | $6$ | $4$ | $( 1, 3, 2, 4)( 5, 8, 6, 7)( 9,21,10,22)(11,23,12,24)(13,26,14,25)(15,27,16,28) (17,30,18,29)(19,32,20,31)(33,36,34,35)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 5,34)( 2, 6,33)( 3, 8,35)( 4, 7,36)( 9,14,18)(10,13,17)(11,15,20) (12,16,19)(21,25,29)(22,26,30)(23,27,31)(24,28,32)$ |
| $ 6, 6, 6, 6, 6, 6 $ | $2$ | $6$ | $( 1, 6,34, 2, 5,33)( 3, 7,35, 4, 8,36)( 9,13,18,10,14,17)(11,16,20,12,15,19) (21,26,29,22,25,30)(23,28,31,24,27,32)$ |
| $ 12, 12, 12 $ | $6$ | $12$ | $( 1, 7,33, 3, 5,36, 2, 8,34, 4, 6,35)( 9,26,17,21,14,30,10,25,18,22,13,29) (11,28,19,23,15,32,12,27,20,24,16,31)$ |
| $ 12, 12, 12 $ | $6$ | $12$ | $( 1, 8,33, 4, 5,35, 2, 7,34, 3, 6,36)( 9,25,17,22,14,29,10,26,18,21,13,30) (11,27,19,24,15,31,12,28,20,23,16,32)$ |
| $ 6, 6, 6, 6, 6, 3, 3 $ | $6$ | $6$ | $( 1,11,26,33,16,21)( 2,12,25,34,15,22)( 3, 9,28,35,14,24)( 4,10,27,36,13,23) ( 5,20,30, 6,19,29)( 7,17,31)( 8,18,32)$ |
| $ 6, 6, 6, 6, 6, 6 $ | $4$ | $6$ | $( 1,11,30, 2,12,29)( 3,10,32, 4, 9,31)( 5,15,22, 6,16,21)( 7,14,23, 8,13,24) (17,28,36,18,27,35)(19,25,34,20,26,33)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $4$ | $3$ | $( 1,12,30)( 2,11,29)( 3, 9,32)( 4,10,31)( 5,16,22)( 6,15,21)( 7,13,23) ( 8,14,24)(17,27,36)(18,28,35)(19,26,34)(20,25,33)$ |
| $ 6, 6, 6, 6, 6, 3, 3 $ | $6$ | $6$ | $( 1,12,26,34,16,22)( 2,11,25,33,15,21)( 3,10,28,36,14,23)( 4, 9,27,35,13,24) ( 5,19,30)( 6,20,29)( 7,18,31, 8,17,32)$ |
| $ 6, 6, 6, 6, 6, 6 $ | $2$ | $6$ | $( 1,15,26, 2,16,25)( 3,13,28, 4,14,27)( 5,20,30, 6,19,29)( 7,18,31, 8,17,32) ( 9,23,35,10,24,36)(11,22,33,12,21,34)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1,16,26)( 2,15,25)( 3,14,28)( 4,13,27)( 5,19,30)( 6,20,29)( 7,17,31) ( 8,18,32)( 9,24,35)(10,23,36)(11,21,33)(12,22,34)$ |
Group invariants
| Order: | $72=2^{3} \cdot 3^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [72, 23] |
| Character table: |
2 3 2 3 2 2 2 2 2 2 2 1 1 2 2 2
3 2 1 2 . 1 2 2 1 1 1 2 2 1 2 2
1a 2a 2b 2c 4a 3a 6a 12a 12b 6b 6c 3b 6d 6e 3c
2P 1a 1a 1a 1a 2b 3a 3a 6a 6a 3c 3b 3b 3c 3c 3c
3P 1a 2a 2b 2c 4a 1a 2b 4a 4a 2a 2b 1a 2a 2b 1a
5P 1a 2a 2b 2c 4a 3a 6a 12b 12a 6d 6c 3b 6b 6e 3c
7P 1a 2a 2b 2c 4a 3a 6a 12b 12a 6b 6c 3b 6d 6e 3c
11P 1a 2a 2b 2c 4a 3a 6a 12a 12b 6d 6c 3b 6b 6e 3c
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 -1 1 1 1 1 1 -1 1 1 -1 1 1
X.3 1 -1 1 1 -1 1 1 -1 -1 -1 1 1 -1 1 1
X.4 1 1 1 -1 -1 1 1 -1 -1 1 1 1 1 1 1
X.5 2 -2 2 . . 2 2 . . 1 -1 -1 1 -1 -1
X.6 2 2 2 . . 2 2 . . -1 -1 -1 -1 -1 -1
X.7 2 . -2 . . 2 -2 . . . -2 2 . -2 2
X.8 2 . 2 . -2 -1 -1 1 1 . -1 -1 . 2 2
X.9 2 . 2 . 2 -1 -1 -1 -1 . -1 -1 . 2 2
X.10 2 . -2 . . -1 1 A -A . 1 -1 . -2 2
X.11 2 . -2 . . -1 1 -A A . 1 -1 . -2 2
X.12 2 . -2 . . 2 -2 . . B 1 -1 -B 1 -1
X.13 2 . -2 . . 2 -2 . . -B 1 -1 B 1 -1
X.14 4 . 4 . . -2 -2 . . . 1 1 . -2 -2
X.15 4 . -4 . . -2 2 . . . -1 1 . 2 -2
A = -E(12)^7+E(12)^11
= Sqrt(3) = r3
B = -E(3)+E(3)^2
= -Sqrt(-3) = -i3
|