Properties

Label 36T38
Degree $36$
Order $72$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group no
Group: $C_3^2:D_4$

Learn more about

Group action invariants

Degree $n$:  $36$
Transitive number $t$:  $38$
Group:  $C_3^2:D_4$
Parity:  $-1$
Primitive:  no
Nilpotency class:  $-1$ (not nilpotent)
$|\Aut(F/K)|$:  $6$
Generators:  (1,30,16,5,26,19)(2,29,15,6,25,20)(3,31,14,7,28,17)(4,32,13,8,27,18)(9,36,24,10,35,23)(11,33,21)(12,34,22), (1,7,33,3,5,36,2,8,34,4,6,35)(9,26,17,21,14,30,10,25,18,22,13,29)(11,28,19,23,15,32,12,27,20,24,16,31)

Low degree resolvents

|G/N|Galois groups for stem field(s)
$2$:  $C_2$ x 3
$4$:  $C_2^2$
$6$:  $S_3$ x 2
$8$:  $D_{4}$
$12$:  $D_{6}$ x 2
$24$:  $D_{12}$, $(C_6\times C_2):C_2$
$36$:  $S_3^2$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 3: $S_3$ x 2

Degree 4: $D_{4}$

Degree 6: $S_3$, $D_{6}$

Degree 9: $S_3^2$

Degree 12: $D_{12}$, $(C_6\times C_2):C_2$

Degree 18: $S_3^2$

Low degree siblings

12T38 x 2, 24T74, 36T33

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

Cycle TypeSizeOrderRepresentative
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $1$ $1$ $()$
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ $6$ $2$ $( 3, 4)( 5,34)( 6,33)( 7,35)( 8,36)( 9,17)(10,18)(11,20)(12,19)(13,14)(21,29) (22,30)(23,32)(24,31)(27,28)$
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ $1$ $2$ $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22) (23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)$
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ $18$ $2$ $( 1, 3)( 2, 4)( 5,35)( 6,36)( 7,33)( 8,34)( 9,30)(10,29)(11,31)(12,32)(13,25) (14,26)(15,27)(16,28)(17,21)(18,22)(19,24)(20,23)$
$ 4, 4, 4, 4, 4, 4, 4, 4, 4 $ $6$ $4$ $( 1, 3, 2, 4)( 5, 8, 6, 7)( 9,21,10,22)(11,23,12,24)(13,26,14,25)(15,27,16,28) (17,30,18,29)(19,32,20,31)(33,36,34,35)$
$ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 $ $2$ $3$ $( 1, 5,34)( 2, 6,33)( 3, 8,35)( 4, 7,36)( 9,14,18)(10,13,17)(11,15,20) (12,16,19)(21,25,29)(22,26,30)(23,27,31)(24,28,32)$
$ 6, 6, 6, 6, 6, 6 $ $2$ $6$ $( 1, 6,34, 2, 5,33)( 3, 7,35, 4, 8,36)( 9,13,18,10,14,17)(11,16,20,12,15,19) (21,26,29,22,25,30)(23,28,31,24,27,32)$
$ 12, 12, 12 $ $6$ $12$ $( 1, 7,33, 3, 5,36, 2, 8,34, 4, 6,35)( 9,26,17,21,14,30,10,25,18,22,13,29) (11,28,19,23,15,32,12,27,20,24,16,31)$
$ 12, 12, 12 $ $6$ $12$ $( 1, 8,33, 4, 5,35, 2, 7,34, 3, 6,36)( 9,25,17,22,14,29,10,26,18,21,13,30) (11,27,19,24,15,31,12,28,20,23,16,32)$
$ 6, 6, 6, 6, 6, 3, 3 $ $6$ $6$ $( 1,11,26,33,16,21)( 2,12,25,34,15,22)( 3, 9,28,35,14,24)( 4,10,27,36,13,23) ( 5,20,30, 6,19,29)( 7,17,31)( 8,18,32)$
$ 6, 6, 6, 6, 6, 6 $ $4$ $6$ $( 1,11,30, 2,12,29)( 3,10,32, 4, 9,31)( 5,15,22, 6,16,21)( 7,14,23, 8,13,24) (17,28,36,18,27,35)(19,25,34,20,26,33)$
$ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 $ $4$ $3$ $( 1,12,30)( 2,11,29)( 3, 9,32)( 4,10,31)( 5,16,22)( 6,15,21)( 7,13,23) ( 8,14,24)(17,27,36)(18,28,35)(19,26,34)(20,25,33)$
$ 6, 6, 6, 6, 6, 3, 3 $ $6$ $6$ $( 1,12,26,34,16,22)( 2,11,25,33,15,21)( 3,10,28,36,14,23)( 4, 9,27,35,13,24) ( 5,19,30)( 6,20,29)( 7,18,31, 8,17,32)$
$ 6, 6, 6, 6, 6, 6 $ $2$ $6$ $( 1,15,26, 2,16,25)( 3,13,28, 4,14,27)( 5,20,30, 6,19,29)( 7,18,31, 8,17,32) ( 9,23,35,10,24,36)(11,22,33,12,21,34)$
$ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 $ $2$ $3$ $( 1,16,26)( 2,15,25)( 3,14,28)( 4,13,27)( 5,19,30)( 6,20,29)( 7,17,31) ( 8,18,32)( 9,24,35)(10,23,36)(11,21,33)(12,22,34)$

Group invariants

Order:  $72=2^{3} \cdot 3^{2}$
Cyclic:  no
Abelian:  no
Solvable:  yes
GAP id:  [72, 23]
Character table:   
      2  3  2  3  2  2  2  2   2   2  2  1  1  2  2  2
      3  2  1  2  .  1  2  2   1   1  1  2  2  1  2  2

        1a 2a 2b 2c 4a 3a 6a 12a 12b 6b 6c 3b 6d 6e 3c
     2P 1a 1a 1a 1a 2b 3a 3a  6a  6a 3c 3b 3b 3c 3c 3c
     3P 1a 2a 2b 2c 4a 1a 2b  4a  4a 2a 2b 1a 2a 2b 1a
     5P 1a 2a 2b 2c 4a 3a 6a 12b 12a 6d 6c 3b 6b 6e 3c
     7P 1a 2a 2b 2c 4a 3a 6a 12b 12a 6b 6c 3b 6d 6e 3c
    11P 1a 2a 2b 2c 4a 3a 6a 12a 12b 6d 6c 3b 6b 6e 3c

X.1      1  1  1  1  1  1  1   1   1  1  1  1  1  1  1
X.2      1 -1  1 -1  1  1  1   1   1 -1  1  1 -1  1  1
X.3      1 -1  1  1 -1  1  1  -1  -1 -1  1  1 -1  1  1
X.4      1  1  1 -1 -1  1  1  -1  -1  1  1  1  1  1  1
X.5      2 -2  2  .  .  2  2   .   .  1 -1 -1  1 -1 -1
X.6      2  2  2  .  .  2  2   .   . -1 -1 -1 -1 -1 -1
X.7      2  . -2  .  .  2 -2   .   .  . -2  2  . -2  2
X.8      2  .  2  . -2 -1 -1   1   1  . -1 -1  .  2  2
X.9      2  .  2  .  2 -1 -1  -1  -1  . -1 -1  .  2  2
X.10     2  . -2  .  . -1  1   A  -A  .  1 -1  . -2  2
X.11     2  . -2  .  . -1  1  -A   A  .  1 -1  . -2  2
X.12     2  . -2  .  .  2 -2   .   .  B  1 -1 -B  1 -1
X.13     2  . -2  .  .  2 -2   .   . -B  1 -1  B  1 -1
X.14     4  .  4  .  . -2 -2   .   .  .  1  1  . -2 -2
X.15     4  . -4  .  . -2  2   .   .  . -1  1  .  2 -2

A = -E(12)^7+E(12)^11
  = Sqrt(3) = r3
B = -E(3)+E(3)^2
  = -Sqrt(-3) = -i3