Show commands:
Magma
magma: G := TransitiveGroup(36, 38);
Group action invariants
Degree $n$: | $36$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $38$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $C_3:D_{12}$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $6$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,30,16,5,26,19)(2,29,15,6,25,20)(3,31,14,7,28,17)(4,32,13,8,27,18)(9,36,24,10,35,23)(11,33,21)(12,34,22), (1,7,33,3,5,36,2,8,34,4,6,35)(9,26,17,21,14,30,10,25,18,22,13,29)(11,28,19,23,15,32,12,27,20,24,16,31) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $6$: $S_3$ x 2 $8$: $D_{4}$ $12$: $D_{6}$ x 2 $24$: $D_{12}$, $(C_6\times C_2):C_2$ $36$: $S_3^2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$ x 2
Degree 4: $D_{4}$
Degree 9: $S_3^2$
Degree 12: $D_{12}$, $(C_6\times C_2):C_2$
Degree 18: $S_3^2$
Low degree siblings
12T38 x 2, 24T74, 36T33Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{36}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{18}$ | $1$ | $2$ | $18$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)$ |
2B | $2^{15},1^{6}$ | $6$ | $2$ | $15$ | $( 3, 4)( 5,34)( 6,33)( 7,35)( 8,36)( 9,17)(10,18)(11,20)(12,19)(13,14)(21,29)(22,30)(23,32)(24,31)(27,28)$ |
2C | $2^{18}$ | $18$ | $2$ | $18$ | $( 1, 8)( 2, 7)( 3, 5)( 4, 6)( 9,22)(10,21)(11,23)(12,24)(13,29)(14,30)(15,31)(16,32)(17,25)(18,26)(19,28)(20,27)(33,36)(34,35)$ |
3A | $3^{12}$ | $2$ | $3$ | $24$ | $( 1,16,26)( 2,15,25)( 3,14,28)( 4,13,27)( 5,19,30)( 6,20,29)( 7,17,31)( 8,18,32)( 9,24,35)(10,23,36)(11,21,33)(12,22,34)$ |
3B | $3^{12}$ | $2$ | $3$ | $24$ | $( 1,34, 5)( 2,33, 6)( 3,35, 8)( 4,36, 7)( 9,18,14)(10,17,13)(11,20,15)(12,19,16)(21,29,25)(22,30,26)(23,31,27)(24,32,28)$ |
3C | $3^{12}$ | $4$ | $3$ | $24$ | $( 1,12,30)( 2,11,29)( 3, 9,32)( 4,10,31)( 5,16,22)( 6,15,21)( 7,13,23)( 8,14,24)(17,27,36)(18,28,35)(19,26,34)(20,25,33)$ |
4A | $4^{9}$ | $6$ | $4$ | $27$ | $( 1, 4, 2, 3)( 5, 7, 6, 8)( 9,22,10,21)(11,24,12,23)(13,25,14,26)(15,28,16,27)(17,29,18,30)(19,31,20,32)(33,35,34,36)$ |
6A | $6^{6}$ | $2$ | $6$ | $30$ | $( 1, 6,34, 2, 5,33)( 3, 7,35, 4, 8,36)( 9,13,18,10,14,17)(11,16,20,12,15,19)(21,26,29,22,25,30)(23,28,31,24,27,32)$ |
6B | $6^{6}$ | $2$ | $6$ | $30$ | $( 1,15,26, 2,16,25)( 3,13,28, 4,14,27)( 5,20,30, 6,19,29)( 7,18,31, 8,17,32)( 9,23,35,10,24,36)(11,22,33,12,21,34)$ |
6C | $6^{6}$ | $4$ | $6$ | $30$ | $( 1,20,22, 2,19,21)( 3,17,24, 4,18,23)( 5,11,26, 6,12,25)( 7, 9,27, 8,10,28)(13,32,36,14,31,35)(15,30,33,16,29,34)$ |
6D1 | $6^{5},3^{2}$ | $6$ | $6$ | $29$ | $( 1,16,26)( 2,15,25)( 3,13,28, 4,14,27)( 5,12,30,34,19,22)( 6,11,29,33,20,21)( 7, 9,31,35,17,24)( 8,10,32,36,18,23)$ |
6D-1 | $6^{5},3^{2}$ | $6$ | $6$ | $29$ | $( 1,26,16)( 2,25,15)( 3,27,14, 4,28,13)( 5,22,19,34,30,12)( 6,21,20,33,29,11)( 7,24,17,35,31, 9)( 8,23,18,36,32,10)$ |
12A1 | $12^{3}$ | $6$ | $12$ | $33$ | $( 1,36, 6, 3,34, 7, 2,35, 5, 4,33, 8)( 9,30,13,21,18,26,10,29,14,22,17,25)(11,32,16,23,20,28,12,31,15,24,19,27)$ |
12A5 | $12^{3}$ | $6$ | $12$ | $33$ | $( 1, 7,33, 3, 5,36, 2, 8,34, 4, 6,35)( 9,26,17,21,14,30,10,25,18,22,13,29)(11,28,19,23,15,32,12,27,20,24,16,31)$ |
Malle's constant $a(G)$: $1/15$
magma: ConjugacyClasses(G);
Group invariants
Order: | $72=2^{3} \cdot 3^{2}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 72.23 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 2B | 2C | 3A | 3B | 3C | 4A | 6A | 6B | 6C | 6D1 | 6D-1 | 12A1 | 12A5 | ||
Size | 1 | 1 | 6 | 18 | 2 | 2 | 4 | 6 | 2 | 2 | 4 | 6 | 6 | 6 | 6 | |
2 P | 1A | 1A | 1A | 1A | 3A | 3B | 3C | 2A | 3B | 3A | 3C | 3A | 3A | 6A | 6A | |
3 P | 1A | 2A | 2B | 2C | 1A | 1A | 1A | 4A | 2A | 2A | 2A | 2B | 2B | 4A | 4A | |
Type | ||||||||||||||||
72.23.1a | R | |||||||||||||||
72.23.1b | R | |||||||||||||||
72.23.1c | R | |||||||||||||||
72.23.1d | R | |||||||||||||||
72.23.2a | R | |||||||||||||||
72.23.2b | R | |||||||||||||||
72.23.2c | R | |||||||||||||||
72.23.2d | R | |||||||||||||||
72.23.2e | R | |||||||||||||||
72.23.2f1 | R | |||||||||||||||
72.23.2f2 | R | |||||||||||||||
72.23.2g1 | C | |||||||||||||||
72.23.2g2 | C | |||||||||||||||
72.23.4a | R | |||||||||||||||
72.23.4b | R |
magma: CharacterTable(G);