Show commands:
Magma
magma: G := TransitiveGroup(36, 37);
Group action invariants
Degree $n$: | $36$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $37$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $C_6.D_6$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $12$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,24,6,28,33,31,2,23,5,27,34,32)(3,22,7,25,35,30,4,21,8,26,36,29)(9,19,14,11,18,15,10,20,13,12,17,16), (1,17,2,18)(3,19,4,20)(5,14,6,13)(7,16,8,15)(9,33,10,34)(11,35,12,36)(21,23,22,24)(25,32,26,31)(27,29,28,30) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_4$ x 2, $C_2^2$ $6$: $S_3$ x 2 $8$: $C_4\times C_2$ $12$: $D_{6}$ x 2, $C_3 : C_4$ x 2 $24$: $S_3 \times C_4$, 24T6 $36$: $S_3^2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$ x 2
Degree 4: $C_4$
Degree 9: $S_3^2$
Degree 12: $C_3 : C_4$, $S_3 \times C_4$
Degree 18: $S_3^2$
Low degree siblings
24T60, 36T37Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{36}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{18}$ | $1$ | $2$ | $18$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)$ |
2B | $2^{18}$ | $3$ | $2$ | $18$ | $( 1,34)( 2,33)( 3,36)( 4,35)( 5, 6)( 7, 8)( 9,14)(10,13)(11,15)(12,16)(17,18)(19,20)(21,26)(22,25)(23,27)(24,28)(29,30)(31,32)$ |
2C | $2^{12},1^{12}$ | $3$ | $2$ | $12$ | $( 5,33)( 6,34)( 7,36)( 8,35)( 9,18)(10,17)(11,20)(12,19)(21,29)(22,30)(23,32)(24,31)$ |
3A | $3^{12}$ | $2$ | $3$ | $24$ | $( 1,26,15)( 2,25,16)( 3,28,13)( 4,27,14)( 5,30,19)( 6,29,20)( 7,31,17)( 8,32,18)( 9,35,23)(10,36,24)(11,34,21)(12,33,22)$ |
3B | $3^{12}$ | $2$ | $3$ | $24$ | $( 1,33, 5)( 2,34, 6)( 3,35, 8)( 4,36, 7)( 9,18,13)(10,17,14)(11,20,16)(12,19,15)(21,29,25)(22,30,26)(23,32,28)(24,31,27)$ |
3C | $3^{12}$ | $4$ | $3$ | $24$ | $( 1,22,19)( 2,21,20)( 3,23,18)( 4,24,17)( 5,26,12)( 6,25,11)( 7,27,10)( 8,28, 9)(13,35,32)(14,36,31)(15,33,30)(16,34,29)$ |
4A1 | $4^{9}$ | $3$ | $4$ | $27$ | $( 1,28, 2,27)( 3,25, 4,26)( 5,32, 6,31)( 7,30, 8,29)( 9,11,10,12)(13,16,14,15)(17,19,18,20)(21,36,22,35)(23,34,24,33)$ |
4A-1 | $4^{9}$ | $3$ | $4$ | $27$ | $( 1,27, 2,28)( 3,26, 4,25)( 5,31, 6,32)( 7,29, 8,30)( 9,12,10,11)(13,15,14,16)(17,20,18,19)(21,35,22,36)(23,33,24,34)$ |
4B1 | $4^{9}$ | $9$ | $4$ | $27$ | $( 1,31, 2,32)( 3,30, 4,29)( 5,27, 6,28)( 7,25, 8,26)( 9,12,10,11)(13,19,14,20)(15,17,16,18)(21,35,22,36)(23,33,24,34)$ |
4B-1 | $4^{9}$ | $9$ | $4$ | $27$ | $( 1,28, 2,27)( 3,25, 4,26)( 5,23, 6,24)( 7,22, 8,21)( 9,20,10,19)(11,17,12,18)(13,16,14,15)(29,36,30,35)(31,33,32,34)$ |
6A | $6^{6}$ | $2$ | $6$ | $30$ | $( 1, 6,33, 2, 5,34)( 3, 7,35, 4, 8,36)( 9,14,18,10,13,17)(11,15,20,12,16,19)(21,26,29,22,25,30)(23,27,32,24,28,31)$ |
6B | $6^{6}$ | $2$ | $6$ | $30$ | $( 1,25,15, 2,26,16)( 3,27,13, 4,28,14)( 5,29,19, 6,30,20)( 7,32,17, 8,31,18)( 9,36,23,10,35,24)(11,33,21,12,34,22)$ |
6C | $6^{6}$ | $4$ | $6$ | $30$ | $( 1,29,12, 2,30,11)( 3,31, 9, 4,32,10)( 5,21,15, 6,22,16)( 7,23,14, 8,24,13)(17,35,27,18,36,28)(19,34,26,20,33,25)$ |
6D | $6^{6}$ | $6$ | $6$ | $30$ | $( 1,21,15,34,26,11)( 2,22,16,33,25,12)( 3,24,13,36,28,10)( 4,23,14,35,27, 9)( 5,29,19, 6,30,20)( 7,32,17, 8,31,18)$ |
6E | $6^{4},3^{4}$ | $6$ | $6$ | $28$ | $( 1,26,15)( 2,25,16)( 3,28,13)( 4,27,14)( 5,22,19,33,30,12)( 6,21,20,34,29,11)( 7,24,17,36,31,10)( 8,23,18,35,32, 9)$ |
12A1 | $12^{3}$ | $6$ | $12$ | $33$ | $( 1,24, 6,28,33,31, 2,23, 5,27,34,32)( 3,22, 7,25,35,30, 4,21, 8,26,36,29)( 9,19,14,11,18,15,10,20,13,12,17,16)$ |
12A-1 | $12^{3}$ | $6$ | $12$ | $33$ | $( 1,23, 6,27,33,32, 2,24, 5,28,34,31)( 3,21, 7,26,35,29, 4,22, 8,25,36,30)( 9,20,14,12,18,16,10,19,13,11,17,15)$ |
Malle's constant $a(G)$: $1/12$
magma: ConjugacyClasses(G);
Group invariants
Order: | $72=2^{3} \cdot 3^{2}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 72.20 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 2B | 2C | 3A | 3B | 3C | 4A1 | 4A-1 | 4B1 | 4B-1 | 6A | 6B | 6C | 6D | 6E | 12A1 | 12A-1 | ||
Size | 1 | 1 | 3 | 3 | 2 | 2 | 4 | 3 | 3 | 9 | 9 | 2 | 2 | 4 | 6 | 6 | 6 | 6 | |
2 P | 1A | 1A | 1A | 1A | 3A | 3B | 3C | 2A | 2A | 2A | 2A | 3B | 3A | 3C | 3A | 3A | 6A | 6A | |
3 P | 1A | 2A | 2B | 2C | 1A | 1A | 1A | 4A-1 | 4A1 | 4B-1 | 4B1 | 2A | 2A | 2A | 2B | 2C | 4A1 | 4A-1 | |
Type | |||||||||||||||||||
72.20.1a | R | ||||||||||||||||||
72.20.1b | R | ||||||||||||||||||
72.20.1c | R | ||||||||||||||||||
72.20.1d | R | ||||||||||||||||||
72.20.1e1 | C | ||||||||||||||||||
72.20.1e2 | C | ||||||||||||||||||
72.20.1f1 | C | ||||||||||||||||||
72.20.1f2 | C | ||||||||||||||||||
72.20.2a | R | ||||||||||||||||||
72.20.2b | R | ||||||||||||||||||
72.20.2c | R | ||||||||||||||||||
72.20.2d | R | ||||||||||||||||||
72.20.2e | S | ||||||||||||||||||
72.20.2f | S | ||||||||||||||||||
72.20.2g1 | C | ||||||||||||||||||
72.20.2g2 | C | ||||||||||||||||||
72.20.4a | R | ||||||||||||||||||
72.20.4b | S |
magma: CharacterTable(G);