Properties

Label 36T36
Degree $36$
Order $72$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group no
Group: $C_2\times C_3^2:C_4$

Downloads

Learn more

Show commands: Magma

magma: G := TransitiveGroup(36, 36);
 

Group action invariants

Degree $n$:  $36$
magma: t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $36$
magma: t, n := TransitiveGroupIdentification(G); t;
 
Group:  $C_2\times C_3^2:C_4$
Parity:  $1$
magma: IsEven(G);
 
Primitive:  no
magma: IsPrimitive(G);
 
magma: NilpotencyClass(G);
 
$\card{\Aut(F/K)}$:  $4$
magma: Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  (1,14,28,2,13,27)(3,15,26,4,16,25)(5,20,31,6,19,32)(7,18,29,8,17,30)(9,21,35,10,22,36)(11,23,34,12,24,33), (1,3)(2,4)(5,17,33,22)(6,18,34,21)(7,19,35,23)(8,20,36,24)(9,13,29,28)(10,14,30,27)(11,15,32,25)(12,16,31,26)
magma: Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$ x 3
$4$:  $C_4$ x 2, $C_2^2$
$8$:  $C_4\times C_2$
$36$:  $C_3^2:C_4$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$ x 3

Degree 3: None

Degree 4: $C_2^2$

Degree 6: $C_3^2:C_4$ x 2

Degree 9: $C_3^2:C_4$

Degree 12: 12T40 x 2

Degree 18: $C_3^2 : C_4$, 18T27 x 2

Low degree siblings

12T40 x 2, 12T41 x 2, 18T27 x 2, 24T76 x 2, 36T35

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{36}$ $1$ $1$ $0$ $()$
2A $2^{18}$ $1$ $2$ $18$ $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)$
2B $2^{16},1^{4}$ $9$ $2$ $16$ $( 5,33)( 6,34)( 7,35)( 8,36)( 9,29)(10,30)(11,32)(12,31)(13,28)(14,27)(15,25)(16,26)(17,22)(18,21)(19,23)(20,24)$
2C $2^{18}$ $9$ $2$ $18$ $( 1, 2)( 3, 4)( 5,34)( 6,33)( 7,36)( 8,35)( 9,30)(10,29)(11,31)(12,32)(13,27)(14,28)(15,26)(16,25)(17,21)(18,22)(19,24)(20,23)$
3A $3^{12}$ $4$ $3$ $24$ $( 1,19,23)( 2,20,24)( 3,17,22)( 4,18,21)( 5,12,28)( 6,11,27)( 7, 9,26)( 8,10,25)(13,31,33)(14,32,34)(15,30,36)(16,29,35)$
3B $3^{12}$ $4$ $3$ $24$ $( 1,31,12)( 2,32,11)( 3,29, 9)( 4,30,10)( 5,23,13)( 6,24,14)( 7,22,16)( 8,21,15)(17,35,26)(18,36,25)(19,33,28)(20,34,27)$
4A1 $4^{8},2^{2}$ $9$ $4$ $26$ $( 1, 3)( 2, 4)( 5,22,33,17)( 6,21,34,18)( 7,23,35,19)( 8,24,36,20)( 9,28,29,13)(10,27,30,14)(11,25,32,15)(12,26,31,16)$
4A-1 $4^{8},2^{2}$ $9$ $4$ $26$ $( 1, 4)( 2, 3)( 5,18,33,21)( 6,17,34,22)( 7,20,35,24)( 8,19,36,23)( 9,14,29,27)(10,13,30,28)(11,16,32,26)(12,15,31,25)$
4B1 $4^{8},2^{2}$ $9$ $4$ $26$ $( 1, 4)( 2, 3)( 5,21,33,18)( 6,22,34,17)( 7,24,35,20)( 8,23,36,19)( 9,27,29,14)(10,28,30,13)(11,26,32,16)(12,25,31,15)$
4B-1 $4^{8},2^{2}$ $9$ $4$ $26$ $( 1, 3)( 2, 4)( 5,17,33,22)( 6,18,34,21)( 7,19,35,23)( 8,20,36,24)( 9,13,29,28)(10,14,30,27)(11,15,32,25)(12,16,31,26)$
6A $6^{6}$ $4$ $6$ $30$ $( 1,20,23, 2,19,24)( 3,18,22, 4,17,21)( 5,11,28, 6,12,27)( 7,10,26, 8, 9,25)(13,32,33,14,31,34)(15,29,36,16,30,35)$
6B $6^{6}$ $4$ $6$ $30$ $( 1,32,12, 2,31,11)( 3,30, 9, 4,29,10)( 5,24,13, 6,23,14)( 7,21,16, 8,22,15)(17,36,26,18,35,25)(19,34,28,20,33,27)$

Malle's constant $a(G)$:     $1/16$

magma: ConjugacyClasses(G);
 

Group invariants

Order:  $72=2^{3} \cdot 3^{2}$
magma: Order(G);
 
Cyclic:  no
magma: IsCyclic(G);
 
Abelian:  no
magma: IsAbelian(G);
 
Solvable:  yes
magma: IsSolvable(G);
 
Nilpotency class:   not nilpotent
Label:  72.45
magma: IdentifyGroup(G);
 
Character table:

1A 2A 2B 2C 3A 3B 4A1 4A-1 4B1 4B-1 6A 6B
Size 1 1 9 9 4 4 9 9 9 9 4 4
2 P 1A 1A 1A 1A 3A 3B 2B 2B 2B 2B 3A 3B
3 P 1A 2A 2B 2C 1A 1A 4B-1 4A-1 4A1 4B1 2A 2A
Type
72.45.1a R 1 1 1 1 1 1 1 1 1 1 1 1
72.45.1b R 1 1 1 1 1 1 1 1 1 1 1 1
72.45.1c R 1 1 1 1 1 1 1 1 1 1 1 1
72.45.1d R 1 1 1 1 1 1 1 1 1 1 1 1
72.45.1e1 C 1 1 1 1 1 1 i i i i 1 1
72.45.1e2 C 1 1 1 1 1 1 i i i i 1 1
72.45.1f1 C 1 1 1 1 1 1 i i i i 1 1
72.45.1f2 C 1 1 1 1 1 1 i i i i 1 1
72.45.4a R 4 4 0 0 2 1 0 0 0 0 2 1
72.45.4b R 4 4 0 0 1 2 0 0 0 0 1 2
72.45.4c R 4 4 0 0 2 1 0 0 0 0 2 1
72.45.4d R 4 4 0 0 1 2 0 0 0 0 1 2

magma: CharacterTable(G);