Show commands:
Magma
magma: G := TransitiveGroup(36, 35);
Group action invariants
Degree $n$: | $36$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $35$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $C_2\times C_3^2:C_4$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $4$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,13,28,2,14,27)(3,15,25,4,16,26)(5,20,32,6,19,31)(7,17,30,8,18,29)(9,21,36,10,22,35)(11,24,33,12,23,34), (1,25,33,9)(2,26,34,10)(3,27,36,12)(4,28,35,11)(5,7,6,8)(13,17,24,30)(14,18,23,29)(15,19,21,31)(16,20,22,32) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_4$ x 2, $C_2^2$ $8$: $C_4\times C_2$ $36$: $C_3^2:C_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: None
Degree 4: $C_4$
Degree 6: $C_3^2:C_4$ x 2
Degree 9: $C_3^2:C_4$
Degree 12: 12T41 x 2
Degree 18: $C_3^2 : C_4$
Low degree siblings
12T40 x 2, 12T41 x 2, 18T27 x 2, 24T76 x 2, 36T36Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{36}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{18}$ | $1$ | $2$ | $18$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)$ |
2B | $2^{18}$ | $9$ | $2$ | $18$ | $( 1,33)( 2,34)( 3,36)( 4,35)( 5, 6)( 7, 8)( 9,25)(10,26)(11,28)(12,27)(13,24)(14,23)(15,21)(16,22)(17,30)(18,29)(19,31)(20,32)$ |
2C | $2^{16},1^{4}$ | $9$ | $2$ | $16$ | $( 1,34)( 2,33)( 3,35)( 4,36)( 9,26)(10,25)(11,27)(12,28)(13,23)(14,24)(15,22)(16,21)(17,29)(18,30)(19,32)(20,31)$ |
3A | $3^{12}$ | $4$ | $3$ | $24$ | $( 1,19,24)( 2,20,23)( 3,18,21)( 4,17,22)( 5,12,28)( 6,11,27)( 7,10,25)( 8, 9,26)(13,31,33)(14,32,34)(15,29,36)(16,30,35)$ |
3B | $3^{12}$ | $4$ | $3$ | $24$ | $( 1,32,12)( 2,31,11)( 3,30,10)( 4,29, 9)( 5,24,14)( 6,23,13)( 7,21,16)( 8,22,15)(17,36,26)(18,35,25)(19,34,28)(20,33,27)$ |
4A1 | $4^{9}$ | $9$ | $4$ | $27$ | $( 1, 9,33,25)( 2,10,34,26)( 3,12,36,27)( 4,11,35,28)( 5, 8, 6, 7)(13,30,24,17)(14,29,23,18)(15,31,21,19)(16,32,22,20)$ |
4A-1 | $4^{9}$ | $9$ | $4$ | $27$ | $( 1,26,33,10)( 2,25,34, 9)( 3,28,36,11)( 4,27,35,12)( 5, 8, 6, 7)(13,18,24,29)(14,17,23,30)(15,20,21,32)(16,19,22,31)$ |
4B1 | $4^{9}$ | $9$ | $4$ | $27$ | $( 1,10,33,26)( 2, 9,34,25)( 3,11,36,28)( 4,12,35,27)( 5, 7, 6, 8)(13,29,24,18)(14,30,23,17)(15,32,21,20)(16,31,22,19)$ |
4B-1 | $4^{9}$ | $9$ | $4$ | $27$ | $( 1,25,33, 9)( 2,26,34,10)( 3,27,36,12)( 4,28,35,11)( 5, 7, 6, 8)(13,17,24,30)(14,18,23,29)(15,19,21,31)(16,20,22,32)$ |
6A | $6^{6}$ | $4$ | $6$ | $30$ | $( 1,20,24, 2,19,23)( 3,17,21, 4,18,22)( 5,11,28, 6,12,27)( 7, 9,25, 8,10,26)(13,32,33,14,31,34)(15,30,36,16,29,35)$ |
6B | $6^{6}$ | $4$ | $6$ | $30$ | $( 1,31,12, 2,32,11)( 3,29,10, 4,30, 9)( 5,23,14, 6,24,13)( 7,22,16, 8,21,15)(17,35,26,18,36,25)(19,33,28,20,34,27)$ |
Malle's constant $a(G)$: $1/16$
magma: ConjugacyClasses(G);
Group invariants
Order: | $72=2^{3} \cdot 3^{2}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 72.45 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 2B | 2C | 3A | 3B | 4A1 | 4A-1 | 4B1 | 4B-1 | 6A | 6B | ||
Size | 1 | 1 | 9 | 9 | 4 | 4 | 9 | 9 | 9 | 9 | 4 | 4 | |
2 P | 1A | 1A | 1A | 1A | 3A | 3B | 2B | 2B | 2B | 2B | 3A | 3B | |
3 P | 1A | 2A | 2B | 2C | 1A | 1A | 4B-1 | 4A-1 | 4A1 | 4B1 | 2A | 2A | |
Type | |||||||||||||
72.45.1a | R | ||||||||||||
72.45.1b | R | ||||||||||||
72.45.1c | R | ||||||||||||
72.45.1d | R | ||||||||||||
72.45.1e1 | C | ||||||||||||
72.45.1e2 | C | ||||||||||||
72.45.1f1 | C | ||||||||||||
72.45.1f2 | C | ||||||||||||
72.45.4a | R | ||||||||||||
72.45.4b | R | ||||||||||||
72.45.4c | R | ||||||||||||
72.45.4d | R |
magma: CharacterTable(G);