Properties

Label 36T35
Degree $36$
Order $72$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group no
Group: $C_2\times C_3^2:C_4$

Downloads

Learn more

Show commands: Magma

magma: G := TransitiveGroup(36, 35);
 

Group action invariants

Degree $n$:  $36$
magma: t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $35$
magma: t, n := TransitiveGroupIdentification(G); t;
 
Group:  $C_2\times C_3^2:C_4$
Parity:  $-1$
magma: IsEven(G);
 
Primitive:  no
magma: IsPrimitive(G);
 
magma: NilpotencyClass(G);
 
$\card{\Aut(F/K)}$:  $4$
magma: Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  (1,13,28,2,14,27)(3,15,25,4,16,26)(5,20,32,6,19,31)(7,17,30,8,18,29)(9,21,36,10,22,35)(11,24,33,12,23,34), (1,25,33,9)(2,26,34,10)(3,27,36,12)(4,28,35,11)(5,7,6,8)(13,17,24,30)(14,18,23,29)(15,19,21,31)(16,20,22,32)
magma: Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$ x 3
$4$:  $C_4$ x 2, $C_2^2$
$8$:  $C_4\times C_2$
$36$:  $C_3^2:C_4$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 3: None

Degree 4: $C_4$

Degree 6: $C_3^2:C_4$ x 2

Degree 9: $C_3^2:C_4$

Degree 12: 12T41 x 2

Degree 18: $C_3^2 : C_4$

Low degree siblings

12T40 x 2, 12T41 x 2, 18T27 x 2, 24T76 x 2, 36T36

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{36}$ $1$ $1$ $0$ $()$
2A $2^{18}$ $1$ $2$ $18$ $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)$
2B $2^{18}$ $9$ $2$ $18$ $( 1,33)( 2,34)( 3,36)( 4,35)( 5, 6)( 7, 8)( 9,25)(10,26)(11,28)(12,27)(13,24)(14,23)(15,21)(16,22)(17,30)(18,29)(19,31)(20,32)$
2C $2^{16},1^{4}$ $9$ $2$ $16$ $( 1,34)( 2,33)( 3,35)( 4,36)( 9,26)(10,25)(11,27)(12,28)(13,23)(14,24)(15,22)(16,21)(17,29)(18,30)(19,32)(20,31)$
3A $3^{12}$ $4$ $3$ $24$ $( 1,19,24)( 2,20,23)( 3,18,21)( 4,17,22)( 5,12,28)( 6,11,27)( 7,10,25)( 8, 9,26)(13,31,33)(14,32,34)(15,29,36)(16,30,35)$
3B $3^{12}$ $4$ $3$ $24$ $( 1,32,12)( 2,31,11)( 3,30,10)( 4,29, 9)( 5,24,14)( 6,23,13)( 7,21,16)( 8,22,15)(17,36,26)(18,35,25)(19,34,28)(20,33,27)$
4A1 $4^{9}$ $9$ $4$ $27$ $( 1, 9,33,25)( 2,10,34,26)( 3,12,36,27)( 4,11,35,28)( 5, 8, 6, 7)(13,30,24,17)(14,29,23,18)(15,31,21,19)(16,32,22,20)$
4A-1 $4^{9}$ $9$ $4$ $27$ $( 1,26,33,10)( 2,25,34, 9)( 3,28,36,11)( 4,27,35,12)( 5, 8, 6, 7)(13,18,24,29)(14,17,23,30)(15,20,21,32)(16,19,22,31)$
4B1 $4^{9}$ $9$ $4$ $27$ $( 1,10,33,26)( 2, 9,34,25)( 3,11,36,28)( 4,12,35,27)( 5, 7, 6, 8)(13,29,24,18)(14,30,23,17)(15,32,21,20)(16,31,22,19)$
4B-1 $4^{9}$ $9$ $4$ $27$ $( 1,25,33, 9)( 2,26,34,10)( 3,27,36,12)( 4,28,35,11)( 5, 7, 6, 8)(13,17,24,30)(14,18,23,29)(15,19,21,31)(16,20,22,32)$
6A $6^{6}$ $4$ $6$ $30$ $( 1,20,24, 2,19,23)( 3,17,21, 4,18,22)( 5,11,28, 6,12,27)( 7, 9,25, 8,10,26)(13,32,33,14,31,34)(15,30,36,16,29,35)$
6B $6^{6}$ $4$ $6$ $30$ $( 1,31,12, 2,32,11)( 3,29,10, 4,30, 9)( 5,23,14, 6,24,13)( 7,22,16, 8,21,15)(17,35,26,18,36,25)(19,33,28,20,34,27)$

Malle's constant $a(G)$:     $1/16$

magma: ConjugacyClasses(G);
 

Group invariants

Order:  $72=2^{3} \cdot 3^{2}$
magma: Order(G);
 
Cyclic:  no
magma: IsCyclic(G);
 
Abelian:  no
magma: IsAbelian(G);
 
Solvable:  yes
magma: IsSolvable(G);
 
Nilpotency class:   not nilpotent
Label:  72.45
magma: IdentifyGroup(G);
 
Character table:

1A 2A 2B 2C 3A 3B 4A1 4A-1 4B1 4B-1 6A 6B
Size 1 1 9 9 4 4 9 9 9 9 4 4
2 P 1A 1A 1A 1A 3A 3B 2B 2B 2B 2B 3A 3B
3 P 1A 2A 2B 2C 1A 1A 4B-1 4A-1 4A1 4B1 2A 2A
Type
72.45.1a R 1 1 1 1 1 1 1 1 1 1 1 1
72.45.1b R 1 1 1 1 1 1 1 1 1 1 1 1
72.45.1c R 1 1 1 1 1 1 1 1 1 1 1 1
72.45.1d R 1 1 1 1 1 1 1 1 1 1 1 1
72.45.1e1 C 1 1 1 1 1 1 i i i i 1 1
72.45.1e2 C 1 1 1 1 1 1 i i i i 1 1
72.45.1f1 C 1 1 1 1 1 1 i i i i 1 1
72.45.1f2 C 1 1 1 1 1 1 i i i i 1 1
72.45.4a R 4 4 0 0 2 1 0 0 0 0 2 1
72.45.4b R 4 4 0 0 1 2 0 0 0 0 1 2
72.45.4c R 4 4 0 0 2 1 0 0 0 0 2 1
72.45.4d R 4 4 0 0 1 2 0 0 0 0 1 2

magma: CharacterTable(G);