Group action invariants
| Degree $n$ : | $36$ | |
| Transitive number $t$ : | $34$ | |
| Group : | $C_2\times S_3^2$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,3)(2,4)(5,7)(6,8)(9,21)(10,22)(11,23)(12,24)(13,26)(14,25)(15,28)(16,27)(17,29)(18,30)(19,31)(20,32)(33,36)(34,35), (1,21)(2,22)(3,24)(4,23)(5,32)(6,31)(7,30)(8,29)(9,16)(10,15)(11,14)(12,13)(25,35)(26,36)(27,33)(28,34), (1,8,33,2,7,34)(3,6,36,4,5,35)(9,15,18,10,16,17)(11,13,19,12,14,20)(21,28,30,22,27,29)(23,26,31,24,25,32) | |
| $|\Aut(F/K)|$: | $4$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_2^2$ x 7 6: $S_3$ x 2 8: $C_2^3$ 12: $D_{6}$ x 6 36: $S_3^2$ Resolvents shown for degrees $\leq 10$
Subfields
Degree 2: $C_2$ x 3
Degree 3: $S_3$ x 2
Degree 4: $C_2^2$
Degree 6: $D_{6}$ x 6, $S_3^2$
Degree 9: $S_3^2$
Degree 12: $S_3 \times C_2^2$ x 2, 12T37
Low degree siblings
There are no siblings with degree $\leq 10$
Data on whether or not a number field with this Galois group has arithmetically equivalent fields has not been computed.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $9$ | $2$ | $( 5,36)( 6,35)( 7,33)( 8,34)( 9,32)(10,31)(11,29)(12,30)(13,27)(14,28)(15,25) (16,26)(17,23)(18,24)(19,22)(20,21)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22) (23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $9$ | $2$ | $( 1, 2)( 3, 4)( 5,35)( 6,36)( 7,34)( 8,33)( 9,31)(10,32)(11,30)(12,29)(13,28) (14,27)(15,26)(16,25)(17,24)(18,23)(19,21)(20,22)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $3$ | $2$ | $( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,21)(10,22)(11,23)(12,24)(13,26)(14,25)(15,28) (16,27)(17,29)(18,30)(19,31)(20,32)(33,36)(34,35)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $3$ | $2$ | $( 1, 3)( 2, 4)( 5,33)( 6,34)( 7,36)( 8,35)( 9,20)(10,19)(11,17)(12,18)(13,16) (14,15)(21,32)(22,31)(23,29)(24,30)(25,28)(26,27)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $3$ | $2$ | $( 1, 4)( 2, 3)( 5, 8)( 6, 7)( 9,22)(10,21)(11,24)(12,23)(13,25)(14,26)(15,27) (16,28)(17,30)(18,29)(19,32)(20,31)(33,35)(34,36)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $3$ | $2$ | $( 1, 4)( 2, 3)( 5,34)( 6,33)( 7,35)( 8,36)( 9,19)(10,20)(11,18)(12,17)(13,15) (14,16)(21,31)(22,32)(23,30)(24,29)(25,27)(26,28)$ |
| $ 6, 6, 6, 6, 6, 6 $ | $6$ | $6$ | $( 1, 5,33, 3, 7,36)( 2, 6,34, 4, 8,35)( 9,27,18,21,16,30)(10,28,17,22,15,29) (11,25,19,23,14,31)(12,26,20,24,13,32)$ |
| $ 6, 6, 6, 6, 6, 6 $ | $6$ | $6$ | $( 1, 6,33, 4, 7,35)( 2, 5,34, 3, 8,36)( 9,28,18,22,16,29)(10,27,17,21,15,30) (11,26,19,24,14,32)(12,25,20,23,13,31)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 7,33)( 2, 8,34)( 3, 5,36)( 4, 6,35)( 9,16,18)(10,15,17)(11,14,19) (12,13,20)(21,27,30)(22,28,29)(23,25,31)(24,26,32)$ |
| $ 6, 6, 6, 6, 6, 6 $ | $2$ | $6$ | $( 1, 8,33, 2, 7,34)( 3, 6,36, 4, 5,35)( 9,15,18,10,16,17)(11,13,19,12,14,20) (21,28,30,22,27,29)(23,26,31,24,25,32)$ |
| $ 6, 6, 6, 6, 6, 6 $ | $6$ | $6$ | $( 1, 9,27,36,13,24)( 2,10,28,35,14,23)( 3,12,26,33,16,21)( 4,11,25,34,15,22) ( 5,20,32, 7,18,30)( 6,19,31, 8,17,29)$ |
| $ 6, 6, 6, 6, 6, 6 $ | $6$ | $6$ | $( 1,10,27,35,13,23)( 2, 9,28,36,14,24)( 3,11,26,34,16,22)( 4,12,25,33,15,21) ( 5,19,32, 8,18,29)( 6,20,31, 7,17,30)$ |
| $ 6, 6, 6, 6, 6, 6 $ | $4$ | $6$ | $( 1,11,30, 2,12,29)( 3,10,32, 4, 9,31)( 5,15,24, 6,16,23)( 7,14,21, 8,13,22) (17,26,35,18,25,36)(19,27,34,20,28,33)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $4$ | $3$ | $( 1,12,30)( 2,11,29)( 3, 9,32)( 4,10,31)( 5,16,24)( 6,15,23)( 7,13,21) ( 8,14,22)(17,25,35)(18,26,36)(19,28,34)(20,27,33)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1,13,27)( 2,14,28)( 3,16,26)( 4,15,25)( 5,18,32)( 6,17,31)( 7,20,30) ( 8,19,29)( 9,24,36)(10,23,35)(11,22,34)(12,21,33)$ |
| $ 6, 6, 6, 6, 6, 6 $ | $2$ | $6$ | $( 1,14,27, 2,13,28)( 3,15,26, 4,16,25)( 5,17,32, 6,18,31)( 7,19,30, 8,20,29) ( 9,23,36,10,24,35)(11,21,34,12,22,33)$ |
Group invariants
| Order: | $72=2^{3} \cdot 3^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [72, 46] |
| Character table: |
2 3 3 3 3 3 3 3 3 2 2 2 2 2 2 1 1 2 2
3 2 . 2 . 1 1 1 1 1 1 2 2 1 1 2 2 2 2
1a 2a 2b 2c 2d 2e 2f 2g 6a 6b 3a 6c 6d 6e 6f 3b 3c 6g
2P 1a 1a 1a 1a 1a 1a 1a 1a 3a 3a 3a 3a 3c 3c 3b 3b 3c 3c
3P 1a 2a 2b 2c 2d 2e 2f 2g 2d 2f 1a 2b 2e 2g 2b 1a 1a 2b
5P 1a 2a 2b 2c 2d 2e 2f 2g 6a 6b 3a 6c 6d 6e 6f 3b 3c 6g
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1 1 -1
X.3 1 -1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1
X.4 1 -1 1 -1 -1 1 -1 1 -1 -1 1 1 1 1 1 1 1 1
X.5 1 -1 1 -1 1 -1 1 -1 1 1 1 1 -1 -1 1 1 1 1
X.6 1 1 -1 -1 -1 -1 1 1 -1 1 1 -1 -1 1 -1 1 1 -1
X.7 1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 1 -1 -1 1 1 -1
X.8 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1
X.9 2 . -2 . . -2 . 2 . . 2 -2 1 -1 1 -1 -1 1
X.10 2 . -2 . . 2 . -2 . . 2 -2 -1 1 1 -1 -1 1
X.11 2 . 2 . . -2 . -2 . . 2 2 1 1 -1 -1 -1 -1
X.12 2 . 2 . . 2 . 2 . . 2 2 -1 -1 -1 -1 -1 -1
X.13 2 . -2 . -2 . 2 . 1 -1 -1 1 . . 1 -1 2 -2
X.14 2 . -2 . 2 . -2 . -1 1 -1 1 . . 1 -1 2 -2
X.15 2 . 2 . -2 . -2 . 1 1 -1 -1 . . -1 -1 2 2
X.16 2 . 2 . 2 . 2 . -1 -1 -1 -1 . . -1 -1 2 2
X.17 4 . 4 . . . . . . . -2 -2 . . 1 1 -2 -2
X.18 4 . -4 . . . . . . . -2 2 . . -1 1 -2 2
|