Show commands:
Magma
magma: G := TransitiveGroup(36, 34);
Group action invariants
Degree $n$: | $36$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $34$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $S_3\times D_6$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $4$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,3)(2,4)(5,7)(6,8)(9,21)(10,22)(11,23)(12,24)(13,26)(14,25)(15,28)(16,27)(17,29)(18,30)(19,31)(20,32)(33,36)(34,35), (1,21)(2,22)(3,24)(4,23)(5,32)(6,31)(7,30)(8,29)(9,16)(10,15)(11,14)(12,13)(25,35)(26,36)(27,33)(28,34), (1,8,33,2,7,34)(3,6,36,4,5,35)(9,15,18,10,16,17)(11,13,19,12,14,20)(21,28,30,22,27,29)(23,26,31,24,25,32) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $6$: $S_3$ x 2 $8$: $C_2^3$ $12$: $D_{6}$ x 6 $24$: $S_3 \times C_2^2$ x 2 $36$: $S_3^2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 3: $S_3$ x 2
Degree 4: $C_2^2$
Degree 6: $D_{6}$ x 6, $S_3^2$
Degree 9: $S_3^2$
Degree 12: $S_3 \times C_2^2$ x 2, 12T37
Low degree siblings
12T37 x 2, 18T29 x 4, 24T73, 36T34, 36T40 x 4Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{36}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{18}$ | $1$ | $2$ | $18$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)$ |
2B | $2^{18}$ | $3$ | $2$ | $18$ | $( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,21)(10,22)(11,23)(12,24)(13,26)(14,25)(15,28)(16,27)(17,29)(18,30)(19,31)(20,32)(33,36)(34,35)$ |
2C | $2^{18}$ | $3$ | $2$ | $18$ | $( 1,25)( 2,26)( 3,28)( 4,27)( 5,29)( 6,30)( 7,31)( 8,32)( 9,11)(10,12)(13,15)(14,16)(17,20)(18,19)(21,35)(22,36)(23,33)(24,34)$ |
2D | $2^{18}$ | $3$ | $2$ | $18$ | $( 1, 4)( 2, 3)( 5,34)( 6,33)( 7,35)( 8,36)( 9,19)(10,20)(11,18)(12,17)(13,15)(14,16)(21,31)(22,32)(23,30)(24,29)(25,27)(26,28)$ |
2E | $2^{18}$ | $3$ | $2$ | $18$ | $( 1, 3)( 2, 4)( 5,33)( 6,34)( 7,36)( 8,35)( 9,20)(10,19)(11,17)(12,18)(13,16)(14,15)(21,32)(22,31)(23,29)(24,30)(25,28)(26,27)$ |
2F | $2^{18}$ | $9$ | $2$ | $18$ | $( 1,29)( 2,30)( 3,31)( 4,32)( 5,25)( 6,26)( 7,28)( 8,27)( 9,10)(11,12)(13,19)(14,20)(15,18)(16,17)(21,34)(22,33)(23,36)(24,35)$ |
2G | $2^{16},1^{4}$ | $9$ | $2$ | $16$ | $( 1, 7)( 2, 8)( 3, 5)( 4, 6)( 9,24)(10,23)(11,22)(12,21)(13,30)(14,29)(15,31)(16,32)(17,25)(18,26)(19,28)(20,27)$ |
3A | $3^{12}$ | $2$ | $3$ | $24$ | $( 1, 7,33)( 2, 8,34)( 3, 5,36)( 4, 6,35)( 9,16,18)(10,15,17)(11,14,19)(12,13,20)(21,27,30)(22,28,29)(23,25,31)(24,26,32)$ |
3B | $3^{12}$ | $2$ | $3$ | $24$ | $( 1,27,13)( 2,28,14)( 3,26,16)( 4,25,15)( 5,32,18)( 6,31,17)( 7,30,20)( 8,29,19)( 9,36,24)(10,35,23)(11,34,22)(12,33,21)$ |
3C | $3^{12}$ | $4$ | $3$ | $24$ | $( 1,30,12)( 2,29,11)( 3,32, 9)( 4,31,10)( 5,24,16)( 6,23,15)( 7,21,13)( 8,22,14)(17,35,25)(18,36,26)(19,34,28)(20,33,27)$ |
6A | $6^{6}$ | $2$ | $6$ | $30$ | $( 1, 8,33, 2, 7,34)( 3, 6,36, 4, 5,35)( 9,15,18,10,16,17)(11,13,19,12,14,20)(21,28,30,22,27,29)(23,26,31,24,25,32)$ |
6B | $6^{6}$ | $2$ | $6$ | $30$ | $( 1,14,27, 2,13,28)( 3,15,26, 4,16,25)( 5,17,32, 6,18,31)( 7,19,30, 8,20,29)( 9,23,36,10,24,35)(11,21,34,12,22,33)$ |
6C | $6^{6}$ | $4$ | $6$ | $30$ | $( 1,19,21, 2,20,22)( 3,17,24, 4,18,23)( 5,10,26, 6, 9,25)( 7,11,27, 8,12,28)(13,29,33,14,30,34)(15,32,35,16,31,36)$ |
6D | $6^{6}$ | $6$ | $6$ | $30$ | $( 1,26,13, 3,27,16)( 2,25,14, 4,28,15)( 5,21,18,33,32,12)( 6,22,17,34,31,11)( 7,24,20,36,30, 9)( 8,23,19,35,29,10)$ |
6E | $6^{6}$ | $6$ | $6$ | $30$ | $( 1,23, 7,25,33,31)( 2,24, 8,26,34,32)( 3,22, 5,28,36,29)( 4,21, 6,27,35,30)( 9,19,16,11,18,14)(10,20,15,12,17,13)$ |
6F | $6^{6}$ | $6$ | $6$ | $30$ | $( 1,36, 7, 3,33, 5)( 2,35, 8, 4,34, 6)( 9,30,16,21,18,27)(10,29,15,22,17,28)(11,31,14,23,19,25)(12,32,13,24,20,26)$ |
6G | $6^{6}$ | $6$ | $6$ | $30$ | $( 1,15,27, 4,13,25)( 2,16,28, 3,14,26)( 5,11,32,34,18,22)( 6,12,31,33,17,21)( 7,10,30,35,20,23)( 8, 9,29,36,19,24)$ |
Malle's constant $a(G)$: $1/16$
magma: ConjugacyClasses(G);
Group invariants
Order: | $72=2^{3} \cdot 3^{2}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 72.46 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A | 3B | 3C | 6A | 6B | 6C | 6D | 6E | 6F | 6G | ||
Size | 1 | 1 | 3 | 3 | 3 | 3 | 9 | 9 | 2 | 2 | 4 | 2 | 2 | 4 | 6 | 6 | 6 | 6 | |
2 P | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 3A | 3B | 3C | 3A | 3B | 3C | 3B | 3A | 3A | 3B | |
3 P | 1A | 2A | 2D | 2C | 2E | 2B | 2F | 2G | 1A | 1A | 1A | 2A | 2A | 2A | 2B | 2C | 2D | 2E | |
Type | |||||||||||||||||||
72.46.1a | R | ||||||||||||||||||
72.46.1b | R | ||||||||||||||||||
72.46.1c | R | ||||||||||||||||||
72.46.1d | R | ||||||||||||||||||
72.46.1e | R | ||||||||||||||||||
72.46.1f | R | ||||||||||||||||||
72.46.1g | R | ||||||||||||||||||
72.46.1h | R | ||||||||||||||||||
72.46.2a | R | ||||||||||||||||||
72.46.2b | R | ||||||||||||||||||
72.46.2c | R | ||||||||||||||||||
72.46.2d | R | ||||||||||||||||||
72.46.2e | R | ||||||||||||||||||
72.46.2f | R | ||||||||||||||||||
72.46.2g | R | ||||||||||||||||||
72.46.2h | R | ||||||||||||||||||
72.46.4a | R | ||||||||||||||||||
72.46.4b | R |
magma: CharacterTable(G);