Show commands:
Magma
magma: G := TransitiveGroup(36, 33);
Group action invariants
Degree $n$: | $36$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $33$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $C_3:D_{12}$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $2$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,13)(8,14)(9,36)(10,35)(11,34)(12,33)(21,22)(25,31)(26,32)(27,29)(28,30), (1,23,7,25,33,31)(2,24,8,26,34,32)(3,21,5,27,36,30)(4,22,6,28,35,29)(9,19,16,11,18,14)(10,20,15,12,17,13) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $6$: $S_3$ x 2 $8$: $D_{4}$ $12$: $D_{6}$ x 2 $24$: $D_{12}$, $(C_6\times C_2):C_2$ $36$: $S_3^2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$ x 2
Degree 4: $D_{4}$
Degree 6: $D_{6}$ x 2, $S_3^2$
Degree 9: $S_3^2$
Degree 12: $D_{12}$, $(C_6\times C_2):C_2$, 12T38 x 2
Degree 18: $S_3^2$
Low degree siblings
12T38 x 2, 24T74, 36T38Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{36}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{18}$ | $1$ | $2$ | $18$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)$ |
2B | $2^{18}$ | $6$ | $2$ | $18$ | $( 1,16)( 2,15)( 3,14)( 4,13)( 5,19)( 6,20)( 7,18)( 8,17)( 9,33)(10,34)(11,36)(12,35)(21,23)(22,24)(25,27)(26,28)(29,32)(30,31)$ |
2C | $2^{17},1^{2}$ | $18$ | $2$ | $17$ | $( 1, 8)( 2, 7)( 3, 5)( 4, 6)( 9,23)(10,24)(11,22)(12,21)(13,30)(14,29)(15,32)(16,31)(17,26)(18,25)(19,28)(20,27)(33,34)$ |
3A | $3^{12}$ | $2$ | $3$ | $24$ | $( 1,33, 7)( 2,34, 8)( 3,36, 5)( 4,35, 6)( 9,18,16)(10,17,15)(11,19,14)(12,20,13)(21,30,27)(22,29,28)(23,31,25)(24,32,26)$ |
3B | $3^{12}$ | $2$ | $3$ | $24$ | $( 1,14,27)( 2,13,28)( 3,16,25)( 4,15,26)( 5,18,31)( 6,17,32)( 7,19,30)( 8,20,29)( 9,23,36)(10,24,35)(11,21,33)(12,22,34)$ |
3C | $3^{12}$ | $4$ | $3$ | $24$ | $( 1,11,30)( 2,12,29)( 3, 9,31)( 4,10,32)( 5,16,23)( 6,15,24)( 7,14,21)( 8,13,22)(17,26,35)(18,25,36)(19,27,33)(20,28,34)$ |
4A | $4^{9}$ | $6$ | $4$ | $27$ | $( 1, 6, 2, 5)( 3, 7, 4, 8)( 9,11,10,12)(13,18,14,17)(15,20,16,19)(21,24,22,23)(25,30,26,29)(27,32,28,31)(33,35,34,36)$ |
6A | $6^{6}$ | $2$ | $6$ | $30$ | $( 1,28,14, 2,27,13)( 3,26,16, 4,25,15)( 5,32,18, 6,31,17)( 7,29,19, 8,30,20)( 9,35,23,10,36,24)(11,34,21,12,33,22)$ |
6B | $6^{6}$ | $2$ | $6$ | $30$ | $( 1,34, 7, 2,33, 8)( 3,35, 5, 4,36, 6)( 9,17,16,10,18,15)(11,20,14,12,19,13)(21,29,27,22,30,28)(23,32,25,24,31,26)$ |
6C | $6^{6}$ | $4$ | $6$ | $30$ | $( 1,22,19, 2,21,20)( 3,24,18, 4,23,17)( 5,26, 9, 6,25,10)( 7,28,11, 8,27,12)(13,33,29,14,34,30)(15,36,32,16,35,31)$ |
6D1 | $6^{6}$ | $6$ | $6$ | $30$ | $( 1, 9, 7,16,33,18)( 2,10, 8,15,34,17)( 3,11, 5,14,36,19)( 4,12, 6,13,35,20)(21,31,27,23,30,25)(22,32,28,24,29,26)$ |
6D-1 | $6^{6}$ | $6$ | $6$ | $30$ | $( 1,18,33,16, 7, 9)( 2,17,34,15, 8,10)( 3,19,36,14, 5,11)( 4,20,35,13, 6,12)(21,25,30,23,27,31)(22,26,29,24,28,32)$ |
12A1 | $12^{3}$ | $6$ | $12$ | $33$ | $( 1,17,28, 5,14,32, 2,18,27, 6,13,31)( 3,19,26, 8,16,30, 4,20,25, 7,15,29)( 9,21,35,12,23,33,10,22,36,11,24,34)$ |
12A5 | $12^{3}$ | $6$ | $12$ | $33$ | $( 1,32,13, 5,27,17, 2,31,14, 6,28,18)( 3,30,15, 8,25,19, 4,29,16, 7,26,20)( 9,33,24,12,36,21,10,34,23,11,35,22)$ |
Malle's constant $a(G)$: $1/17$
magma: ConjugacyClasses(G);
Group invariants
Order: | $72=2^{3} \cdot 3^{2}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 72.23 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 2B | 2C | 3A | 3B | 3C | 4A | 6A | 6B | 6C | 6D1 | 6D-1 | 12A1 | 12A5 | ||
Size | 1 | 1 | 6 | 18 | 2 | 2 | 4 | 6 | 2 | 2 | 4 | 6 | 6 | 6 | 6 | |
2 P | 1A | 1A | 1A | 1A | 3A | 3B | 3C | 2A | 3B | 3A | 3C | 3A | 3A | 6A | 6A | |
3 P | 1A | 2A | 2B | 2C | 1A | 1A | 1A | 4A | 2A | 2A | 2A | 2B | 2B | 4A | 4A | |
Type | ||||||||||||||||
72.23.1a | R | |||||||||||||||
72.23.1b | R | |||||||||||||||
72.23.1c | R | |||||||||||||||
72.23.1d | R | |||||||||||||||
72.23.2a | R | |||||||||||||||
72.23.2b | R | |||||||||||||||
72.23.2c | R | |||||||||||||||
72.23.2d | R | |||||||||||||||
72.23.2e | R | |||||||||||||||
72.23.2f1 | R | |||||||||||||||
72.23.2f2 | R | |||||||||||||||
72.23.2g1 | C | |||||||||||||||
72.23.2g2 | C | |||||||||||||||
72.23.4a | R | |||||||||||||||
72.23.4b | R |
magma: CharacterTable(G);