Show commands:
Magma
magma: G := TransitiveGroup(36, 31);
Group action invariants
Degree $n$: | $36$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $31$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $C_6\times A_4$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $12$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,20,30,2,19,29)(3,18,32,4,17,31)(5,22,33,6,21,34)(7,24,35,8,23,36)(9,15,27,10,16,28)(11,13,25,12,14,26), (1,15,36)(2,16,35)(3,14,33)(4,13,34)(5,20,26)(6,19,25)(7,17,28)(8,18,27)(9,22,32)(10,21,31)(11,24,29)(12,23,30) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $3$: $C_3$ x 4 $6$: $C_6$ x 4 $9$: $C_3^2$ $12$: $A_4$ $18$: $C_6 \times C_3$ $24$: $A_4\times C_2$ $36$: $C_3\times A_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $C_3$ x 4
Degree 4: None
Degree 6: $A_4$, $A_4\times C_2$
Degree 9: $C_3^2$
Degree 12: $A_4\times C_2$
Degree 18: $A_4 \times C_3$, 18T25
Low degree siblings
18T25, 24T71 x 3, 36T18Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{36}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{18}$ | $1$ | $2$ | $18$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)$ |
2B | $2^{18}$ | $3$ | $2$ | $18$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,15)(14,16)(17,20)(18,19)(21,23)(22,24)(25,28)(26,27)(29,31)(30,32)(33,36)(34,35)$ |
2C | $2^{12},1^{12}$ | $3$ | $2$ | $12$ | $(13,16)(14,15)(17,19)(18,20)(21,24)(22,23)(25,27)(26,28)(29,32)(30,31)(33,35)(34,36)$ |
3A1 | $3^{12}$ | $1$ | $3$ | $24$ | $( 1, 9, 5)( 2,10, 6)( 3,12, 8)( 4,11, 7)(13,24,17)(14,23,18)(15,22,20)(16,21,19)(25,35,31)(26,36,32)(27,33,30)(28,34,29)$ |
3A-1 | $3^{12}$ | $1$ | $3$ | $24$ | $( 1, 5, 9)( 2, 6,10)( 3, 8,12)( 4, 7,11)(13,17,24)(14,18,23)(15,20,22)(16,19,21)(25,31,35)(26,32,36)(27,30,33)(28,29,34)$ |
3B1 | $3^{12}$ | $4$ | $3$ | $24$ | $( 1,30,19)( 2,29,20)( 3,32,17)( 4,31,18)( 5,33,21)( 6,34,22)( 7,35,23)( 8,36,24)( 9,27,16)(10,28,15)(11,25,14)(12,26,13)$ |
3B-1 | $3^{12}$ | $4$ | $3$ | $24$ | $( 1,19,30)( 2,20,29)( 3,17,32)( 4,18,31)( 5,21,33)( 6,22,34)( 7,23,35)( 8,24,36)( 9,16,27)(10,15,28)(11,14,25)(12,13,26)$ |
3C1 | $3^{12}$ | $4$ | $3$ | $24$ | $( 1,33,16)( 2,34,15)( 3,36,13)( 4,35,14)( 5,27,19)( 6,28,20)( 7,25,18)( 8,26,17)( 9,30,21)(10,29,22)(11,31,23)(12,32,24)$ |
3C-1 | $3^{12}$ | $4$ | $3$ | $24$ | $( 1,21,27)( 2,22,28)( 3,24,26)( 4,23,25)( 5,16,30)( 6,15,29)( 7,14,31)( 8,13,32)( 9,19,33)(10,20,34)(11,18,35)(12,17,36)$ |
3D1 | $3^{12}$ | $4$ | $3$ | $24$ | $( 1,16,33)( 2,15,34)( 3,13,36)( 4,14,35)( 5,19,27)( 6,20,28)( 7,18,25)( 8,17,26)( 9,21,30)(10,22,29)(11,23,31)(12,24,32)$ |
3D-1 | $3^{12}$ | $4$ | $3$ | $24$ | $( 1,27,21)( 2,28,22)( 3,26,24)( 4,25,23)( 5,30,16)( 6,29,15)( 7,31,14)( 8,32,13)( 9,33,19)(10,34,20)(11,35,18)(12,36,17)$ |
6A1 | $6^{6}$ | $1$ | $6$ | $30$ | $( 1,10, 5, 2, 9, 6)( 3,11, 8, 4,12, 7)(13,23,17,14,24,18)(15,21,20,16,22,19)(25,36,31,26,35,32)(27,34,30,28,33,29)$ |
6A-1 | $6^{6}$ | $1$ | $6$ | $30$ | $( 1, 6, 9, 2, 5,10)( 3, 7,12, 4, 8,11)(13,18,24,14,17,23)(15,19,22,16,20,21)(25,32,35,26,31,36)(27,29,33,28,30,34)$ |
6B1 | $6^{6}$ | $3$ | $6$ | $30$ | $( 1, 6, 9, 2, 5,10)( 3, 7,12, 4, 8,11)(13,20,24,15,17,22)(14,19,23,16,18,21)(25,29,35,28,31,34)(26,30,36,27,32,33)$ |
6B-1 | $6^{6}$ | $3$ | $6$ | $30$ | $( 1,10, 5, 2, 9, 6)( 3,11, 8, 4,12, 7)(13,22,17,15,24,20)(14,21,18,16,23,19)(25,34,31,28,35,29)(26,33,32,27,36,30)$ |
6C1 | $6^{4},3^{4}$ | $3$ | $6$ | $28$ | $( 1, 5, 9)( 2, 6,10)( 3, 8,12)( 4, 7,11)(13,19,24,16,17,21)(14,20,23,15,18,22)(25,30,35,27,31,33)(26,29,36,28,32,34)$ |
6C-1 | $6^{4},3^{4}$ | $3$ | $6$ | $28$ | $( 1, 9, 5)( 2,10, 6)( 3,12, 8)( 4,11, 7)(13,21,17,16,24,19)(14,22,18,15,23,20)(25,33,31,27,35,30)(26,34,32,28,36,29)$ |
6D1 | $6^{6}$ | $4$ | $6$ | $30$ | $( 1,20,30, 2,19,29)( 3,18,32, 4,17,31)( 5,22,33, 6,21,34)( 7,24,35, 8,23,36)( 9,15,27,10,16,28)(11,13,25,12,14,26)$ |
6D-1 | $6^{6}$ | $4$ | $6$ | $30$ | $( 1,28,21, 2,27,22)( 3,25,24, 4,26,23)( 5,29,16, 6,30,15)( 7,32,14, 8,31,13)( 9,34,19,10,33,20)(11,36,18,12,35,17)$ |
6E1 | $6^{6}$ | $4$ | $6$ | $30$ | $( 1,22,27, 2,21,28)( 3,23,26, 4,24,25)( 5,15,30, 6,16,29)( 7,13,31, 8,14,32)( 9,20,33,10,19,34)(11,17,35,12,18,36)$ |
6E-1 | $6^{6}$ | $4$ | $6$ | $30$ | $( 1,15,33, 2,16,34)( 3,14,36, 4,13,35)( 5,20,27, 6,19,28)( 7,17,25, 8,18,26)( 9,22,30,10,21,29)(11,24,31,12,23,32)$ |
6F1 | $6^{6}$ | $4$ | $6$ | $30$ | $( 1,29,19, 2,30,20)( 3,31,17, 4,32,18)( 5,34,21, 6,33,22)( 7,36,23, 8,35,24)( 9,28,16,10,27,15)(11,26,14,12,25,13)$ |
6F-1 | $6^{6}$ | $4$ | $6$ | $30$ | $( 1,34,16, 2,33,15)( 3,35,13, 4,36,14)( 5,28,19, 6,27,20)( 7,26,18, 8,25,17)( 9,29,21,10,30,22)(11,32,23,12,31,24)$ |
Malle's constant $a(G)$: $1/12$
magma: ConjugacyClasses(G);
Group invariants
Order: | $72=2^{3} \cdot 3^{2}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 72.47 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 2B | 2C | 3A1 | 3A-1 | 3B1 | 3B-1 | 3C1 | 3C-1 | 3D1 | 3D-1 | 6A1 | 6A-1 | 6B1 | 6B-1 | 6C1 | 6C-1 | 6D1 | 6D-1 | 6E1 | 6E-1 | 6F1 | 6F-1 | ||
Size | 1 | 1 | 3 | 3 | 1 | 1 | 4 | 4 | 4 | 4 | 4 | 4 | 1 | 1 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | |
2 P | 1A | 1A | 1A | 1A | 3A-1 | 3A1 | 3B-1 | 3B1 | 3D-1 | 3C1 | 3D1 | 3C-1 | 3A-1 | 3A1 | 3A1 | 3A-1 | 3A1 | 3A-1 | 3B1 | 3C-1 | 3C1 | 3D1 | 3B-1 | 3D-1 | |
3 P | 1A | 2A | 2B | 2C | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 2A | 2A | 2B | 2B | 2C | 2C | 2A | 2A | 2A | 2A | 2A | 2A | |
Type | |||||||||||||||||||||||||
72.47.1a | R | ||||||||||||||||||||||||
72.47.1b | R | ||||||||||||||||||||||||
72.47.1c1 | C | ||||||||||||||||||||||||
72.47.1c2 | C | ||||||||||||||||||||||||
72.47.1d1 | C | ||||||||||||||||||||||||
72.47.1d2 | C | ||||||||||||||||||||||||
72.47.1e1 | C | ||||||||||||||||||||||||
72.47.1e2 | C | ||||||||||||||||||||||||
72.47.1f1 | C | ||||||||||||||||||||||||
72.47.1f2 | C | ||||||||||||||||||||||||
72.47.1g1 | C | ||||||||||||||||||||||||
72.47.1g2 | C | ||||||||||||||||||||||||
72.47.1h1 | C | ||||||||||||||||||||||||
72.47.1h2 | C | ||||||||||||||||||||||||
72.47.1i1 | C | ||||||||||||||||||||||||
72.47.1i2 | C | ||||||||||||||||||||||||
72.47.1j1 | C | ||||||||||||||||||||||||
72.47.1j2 | C | ||||||||||||||||||||||||
72.47.3a | R | ||||||||||||||||||||||||
72.47.3b | R | ||||||||||||||||||||||||
72.47.3c1 | C | ||||||||||||||||||||||||
72.47.3c2 | C | ||||||||||||||||||||||||
72.47.3d1 | C | ||||||||||||||||||||||||
72.47.3d2 | C |
magma: CharacterTable(G);