Show commands:
Magma
magma: G := TransitiveGroup(36, 25);
Group action invariants
Degree $n$: | $36$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $25$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $C_2^2:D_9$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $12$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,22,2,21)(3,23)(4,24)(5,20,6,19)(7,18,8,17)(9,16,10,15)(11,14)(12,13)(25,34)(26,33)(27,35,28,36)(29,31,30,32), (1,33,32,27,24,20,16,11,7)(2,34,31,28,23,19,15,12,8)(3,35,30,25,22,17,13,10,5)(4,36,29,26,21,18,14,9,6) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $6$: $S_3$ $18$: $D_{9}$ $24$: $S_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 4: None
Degree 9: $D_{9}$
Degree 12: $S_4$
Low degree siblings
18T38, 18T39, 36T57Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{36}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{12},1^{12}$ | $3$ | $2$ | $12$ | $( 1, 2)( 3, 4)( 5, 6)(11,12)(13,14)(15,16)(17,18)(23,24)(25,26)(27,28)(29,30)(33,34)$ |
2B | $2^{18}$ | $18$ | $2$ | $18$ | $( 1,22)( 2,21)( 3,24)( 4,23)( 5,20)( 6,19)( 7,17)( 8,18)( 9,15)(10,16)(11,13)(12,14)(25,33)(26,34)(27,35)(28,36)(29,31)(30,32)$ |
3A | $3^{12}$ | $2$ | $3$ | $24$ | $( 1,27,16)( 2,28,15)( 3,25,13)( 4,26,14)( 5,30,17)( 6,29,18)( 7,32,20)( 8,31,19)( 9,36,21)(10,35,22)(11,33,24)(12,34,23)$ |
4A | $4^{6},2^{6}$ | $18$ | $4$ | $24$ | $( 1,21, 2,22)( 3,23)( 4,24)( 5,19, 6,20)( 7,17, 8,18)( 9,15,10,16)(11,14)(12,13)(25,34)(26,33)(27,36,28,35)(29,32,30,31)$ |
6A | $6^{4},3^{4}$ | $6$ | $6$ | $28$ | $( 1,28,16, 2,27,15)( 3,26,13, 4,25,14)( 5,29,17, 6,30,18)( 7,32,20)( 8,31,19)( 9,36,21)(10,35,22)(11,34,24,12,33,23)$ |
9A1 | $9^{4}$ | $8$ | $9$ | $32$ | $( 1,12,20,27,34, 7,16,23,32)( 2,11,19,28,33, 8,15,24,31)( 3, 9,18,25,36, 6,13,21,29)( 4,10,17,26,35, 5,14,22,30)$ |
9A2 | $9^{4}$ | $8$ | $9$ | $32$ | $( 1,23, 7,27,12,32,16,34,20)( 2,24, 8,28,11,31,15,33,19)( 3,21, 6,25, 9,29,13,36,18)( 4,22, 5,26,10,30,14,35,17)$ |
9A4 | $9^{4}$ | $8$ | $9$ | $32$ | $( 1,34,32,27,23,20,16,12, 7)( 2,33,31,28,24,19,15,11, 8)( 3,36,29,25,21,18,13, 9, 6)( 4,35,30,26,22,17,14,10, 5)$ |
Malle's constant $a(G)$: $1/12$
magma: ConjugacyClasses(G);
Group invariants
Order: | $72=2^{3} \cdot 3^{2}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 72.15 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 2B | 3A | 4A | 6A | 9A1 | 9A2 | 9A4 | ||
Size | 1 | 3 | 18 | 2 | 18 | 6 | 8 | 8 | 8 | |
2 P | 1A | 1A | 1A | 3A | 2A | 3A | 9A1 | 9A2 | 9A4 | |
3 P | 1A | 2A | 2B | 1A | 4A | 2A | 3A | 3A | 3A | |
Type | ||||||||||
72.15.1a | R | |||||||||
72.15.1b | R | |||||||||
72.15.2a | R | |||||||||
72.15.2b1 | R | |||||||||
72.15.2b2 | R | |||||||||
72.15.2b3 | R | |||||||||
72.15.3a | R | |||||||||
72.15.3b | R | |||||||||
72.15.6a | R |
magma: CharacterTable(G);