Show commands:
Magma
magma: G := TransitiveGroup(36, 24);
Group action invariants
Degree $n$: | $36$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $24$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $C_9:D_4$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $18$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,23,7,27,12,31,16,33,19,2,24,8,28,11,32,15,34,20)(3,22,5,25,10,30,13,35,17)(4,21,6,26,9,29,14,36,18), (1,5,2,6)(3,8,4,7)(9,34,10,33)(11,36,12,35)(13,31,14,32)(15,29,16,30)(17,27,18,28)(19,25,20,26)(21,24,22,23) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $6$: $S_3$ $8$: $D_{4}$ $12$: $D_{6}$ $18$: $D_{9}$ $24$: $(C_6\times C_2):C_2$ $36$: $D_{18}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 4: $D_{4}$
Degree 6: $S_3$
Degree 9: $D_{9}$
Degree 12: $(C_6\times C_2):C_2$
Degree 18: $D_9$
Low degree siblings
36T46Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{36}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{18}$ | $1$ | $2$ | $18$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)$ |
2B | $2^{9},1^{18}$ | $2$ | $2$ | $9$ | $( 3, 4)( 5, 6)( 9,10)(13,14)(17,18)(21,22)(25,26)(29,30)(35,36)$ |
2C | $2^{18}$ | $18$ | $2$ | $18$ | $( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,33)(10,34)(11,36)(12,35)(13,32)(14,31)(15,29)(16,30)(17,28)(18,27)(19,25)(20,26)(21,23)(22,24)$ |
3A | $3^{12}$ | $2$ | $3$ | $24$ | $( 1,28,16)( 2,27,15)( 3,25,13)( 4,26,14)( 5,30,17)( 6,29,18)( 7,32,19)( 8,31,20)( 9,36,21)(10,35,22)(11,33,23)(12,34,24)$ |
4A | $4^{9}$ | $18$ | $4$ | $27$ | $( 1, 5, 2, 6)( 3, 8, 4, 7)( 9,34,10,33)(11,36,12,35)(13,31,14,32)(15,29,16,30)(17,27,18,28)(19,25,20,26)(21,24,22,23)$ |
6A | $6^{6}$ | $2$ | $6$ | $30$ | $( 1,15,28, 2,16,27)( 3,14,25, 4,13,26)( 5,18,30, 6,17,29)( 7,20,32, 8,19,31)( 9,22,36,10,21,35)(11,24,33,12,23,34)$ |
6B1 | $6^{3},3^{6}$ | $2$ | $6$ | $27$ | $( 1,15,28, 2,16,27)( 3,13,25)( 4,14,26)( 5,17,30)( 6,18,29)( 7,20,32, 8,19,31)( 9,21,36)(10,22,35)(11,24,33,12,23,34)$ |
6B-1 | $6^{3},3^{6}$ | $2$ | $6$ | $27$ | $( 1,27,16, 2,28,15)( 3,25,13)( 4,26,14)( 5,30,17)( 6,29,18)( 7,31,19, 8,32,20)( 9,36,21)(10,35,22)(11,34,23,12,33,24)$ |
9A1 | $9^{4}$ | $2$ | $9$ | $32$ | $( 1,24, 7,28,12,32,16,34,19)( 2,23, 8,27,11,31,15,33,20)( 3,22, 5,25,10,30,13,35,17)( 4,21, 6,26, 9,29,14,36,18)$ |
9A2 | $9^{4}$ | $2$ | $9$ | $32$ | $( 1,34,32,28,24,19,16,12, 7)( 2,33,31,27,23,20,15,11, 8)( 3,35,30,25,22,17,13,10, 5)( 4,36,29,26,21,18,14, 9, 6)$ |
9A4 | $9^{4}$ | $2$ | $9$ | $32$ | $( 1,32,24,16, 7,34,28,19,12)( 2,31,23,15, 8,33,27,20,11)( 3,30,22,13, 5,35,25,17,10)( 4,29,21,14, 6,36,26,18, 9)$ |
18A1 | $18,9^{2}$ | $2$ | $18$ | $33$ | $( 1,11,19,27,34, 8,16,23,32, 2,12,20,28,33, 7,15,24,31)( 3,10,17,25,35, 5,13,22,30)( 4, 9,18,26,36, 6,14,21,29)$ |
18A5 | $18,9^{2}$ | $2$ | $18$ | $33$ | $( 1, 8,12,15,19,23,28,31,34, 2, 7,11,16,20,24,27,32,33)( 3, 5,10,13,17,22,25,30,35)( 4, 6, 9,14,18,21,26,29,36)$ |
18A7 | $18,9^{2}$ | $2$ | $18$ | $33$ | $( 1,31,24,15, 7,33,28,20,12, 2,32,23,16, 8,34,27,19,11)( 3,30,22,13, 5,35,25,17,10)( 4,29,21,14, 6,36,26,18, 9)$ |
18B1 | $18^{2}$ | $2$ | $18$ | $34$ | $( 1,11,19,27,34, 8,16,23,32, 2,12,20,28,33, 7,15,24,31)( 3, 9,17,26,35, 6,13,21,30, 4,10,18,25,36, 5,14,22,29)$ |
18B-1 | $18^{2}$ | $2$ | $18$ | $34$ | $( 1,20,34,15,32,11,28, 8,24, 2,19,33,16,31,12,27, 7,23)( 3,18,35,14,30, 9,25, 6,22, 4,17,36,13,29,10,26, 5,21)$ |
18B5 | $18,9^{2}$ | $2$ | $18$ | $33$ | $( 1,23, 7,27,12,31,16,33,19, 2,24, 8,28,11,32,15,34,20)( 3,22, 5,25,10,30,13,35,17)( 4,21, 6,26, 9,29,14,36,18)$ |
18B-5 | $18,9^{2}$ | $2$ | $18$ | $33$ | $( 1,33,32,27,24,20,16,11, 7, 2,34,31,28,23,19,15,12, 8)( 3,35,30,25,22,17,13,10, 5)( 4,36,29,26,21,18,14, 9, 6)$ |
18B7 | $18,9^{2}$ | $2$ | $18$ | $33$ | $( 1,20,34,15,32,11,28, 8,24, 2,19,33,16,31,12,27, 7,23)( 3,17,35,13,30,10,25, 5,22)( 4,18,36,14,29, 9,26, 6,21)$ |
18B-7 | $18^{2}$ | $2$ | $18$ | $34$ | $( 1, 8,12,15,19,23,28,31,34, 2, 7,11,16,20,24,27,32,33)( 3, 6,10,14,17,21,25,29,35, 4, 5, 9,13,18,22,26,30,36)$ |
Malle's constant $a(G)$: $1/9$
magma: ConjugacyClasses(G);
Group invariants
Order: | $72=2^{3} \cdot 3^{2}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 72.8 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 2B | 2C | 3A | 4A | 6A | 6B1 | 6B-1 | 9A1 | 9A2 | 9A4 | 18A1 | 18A5 | 18A7 | 18B1 | 18B-1 | 18B5 | 18B-5 | 18B7 | 18B-7 | ||
Size | 1 | 1 | 2 | 18 | 2 | 18 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
2 P | 1A | 1A | 1A | 1A | 3A | 2A | 3A | 3A | 3A | 9A1 | 9A2 | 9A4 | 9A4 | 9A2 | 9A4 | 9A4 | 9A1 | 9A1 | 9A2 | 9A1 | 9A2 | |
3 P | 1A | 2A | 2B | 2C | 1A | 4A | 2A | 2B | 2B | 3A | 3A | 3A | 6B-1 | 6B1 | 6B1 | 6A | 6A | 6B-1 | 6B-1 | 6B1 | 6A | |
Type | ||||||||||||||||||||||
72.8.1a | R | |||||||||||||||||||||
72.8.1b | R | |||||||||||||||||||||
72.8.1c | R | |||||||||||||||||||||
72.8.1d | R | |||||||||||||||||||||
72.8.2a | R | |||||||||||||||||||||
72.8.2b | R | |||||||||||||||||||||
72.8.2c | R | |||||||||||||||||||||
72.8.2d1 | C | |||||||||||||||||||||
72.8.2d2 | C | |||||||||||||||||||||
72.8.2e1 | R | |||||||||||||||||||||
72.8.2e2 | R | |||||||||||||||||||||
72.8.2e3 | R | |||||||||||||||||||||
72.8.2f1 | R | |||||||||||||||||||||
72.8.2f2 | R | |||||||||||||||||||||
72.8.2f3 | R | |||||||||||||||||||||
72.8.2g1 | C | |||||||||||||||||||||
72.8.2g2 | C | |||||||||||||||||||||
72.8.2g3 | C | |||||||||||||||||||||
72.8.2g4 | C | |||||||||||||||||||||
72.8.2g5 | C | |||||||||||||||||||||
72.8.2g6 | C |
magma: CharacterTable(G);