Show commands:
Magma
magma: G := TransitiveGroup(36, 23);
Group action invariants
Degree $n$: | $36$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $23$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $C_3:S_4$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $12$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,30,10)(2,29,9)(3,31,12)(4,32,11)(5,23,14)(6,24,13)(7,21,15)(8,22,16)(17,33,28)(18,34,27)(19,35,25)(20,36,26), (1,21,18)(2,22,17)(3,24,19)(4,23,20)(5,26,12)(6,25,11)(7,28,9)(8,27,10)(13,36,32)(14,35,31)(15,33,30)(16,34,29), (1,3)(2,4)(5,34)(6,33)(7,35)(8,36)(9,32)(10,31)(11,29)(12,30)(13,28)(14,27)(15,25)(16,26)(17,24)(18,23)(19,21)(20,22) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $6$: $S_3$ x 4 $18$: $C_3^2:C_2$ $24$: $S_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$ x 4
Degree 4: None
Degree 6: $S_3$ x 4, $S_4$, $S_4$
Degree 9: $C_3^2:C_2$
Degree 12: $S_4$
Degree 18: $C_3^2 : C_2$, 18T37, 18T40
Low degree siblings
12T44 x 3, 18T37, 18T40, 24T79 x 3, 36T56Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{36}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{12},1^{12}$ | $3$ | $2$ | $12$ | $( 3, 4)( 7, 8)( 9,10)(11,12)(13,14)(17,18)(21,22)(23,24)(25,26)(29,30)(33,34)(35,36)$ |
2B | $2^{18}$ | $18$ | $2$ | $18$ | $( 1, 3)( 2, 4)( 5,34)( 6,33)( 7,35)( 8,36)( 9,32)(10,31)(11,29)(12,30)(13,28)(14,27)(15,25)(16,26)(17,24)(18,23)(19,21)(20,22)$ |
3A | $3^{12}$ | $2$ | $3$ | $24$ | $( 1,16,28)( 2,15,27)( 3,13,26)( 4,14,25)( 5,19,32)( 6,20,31)( 7,18,29)( 8,17,30)( 9,21,34)(10,22,33)(11,23,35)(12,24,36)$ |
3B | $3^{12}$ | $8$ | $3$ | $24$ | $( 1,22,17)( 2,21,18)( 3,24,20)( 4,23,19)( 5,25,11)( 6,26,12)( 7,27, 9)( 8,28,10)(13,36,31)(14,35,32)(15,34,29)(16,33,30)$ |
3C | $3^{12}$ | $8$ | $3$ | $24$ | $( 1,33, 8)( 2,34, 7)( 3,36, 6)( 4,35, 5)( 9,18,15)(10,17,16)(11,19,14)(12,20,13)(21,29,27)(22,30,28)(23,32,25)(24,31,26)$ |
3D | $3^{12}$ | $8$ | $3$ | $24$ | $( 1,30,10)( 2,29, 9)( 3,31,12)( 4,32,11)( 5,23,14)( 6,24,13)( 7,21,15)( 8,22,16)(17,33,28)(18,34,27)(19,35,25)(20,36,26)$ |
4A | $4^{6},2^{6}$ | $18$ | $4$ | $24$ | $( 1, 4, 2, 3)( 5,33, 6,34)( 7,36)( 8,35)( 9,32,10,31)(11,30)(12,29)(13,28,14,27)(15,26,16,25)(17,23)(18,24)(19,22,20,21)$ |
6A | $6^{4},3^{4}$ | $6$ | $6$ | $28$ | $( 1,16,28)( 2,15,27)( 3,14,26, 4,13,25)( 5,19,32)( 6,20,31)( 7,17,29, 8,18,30)( 9,22,34,10,21,33)(11,24,35,12,23,36)$ |
Malle's constant $a(G)$: $1/12$
magma: ConjugacyClasses(G);
Group invariants
Order: | $72=2^{3} \cdot 3^{2}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 72.43 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 2B | 3A | 3B | 3C | 3D | 4A | 6A | ||
Size | 1 | 3 | 18 | 2 | 8 | 8 | 8 | 18 | 6 | |
2 P | 1A | 1A | 1A | 3A | 3B | 3C | 3D | 2A | 3A | |
3 P | 1A | 2A | 2B | 1A | 1A | 1A | 1A | 4A | 2A | |
Type | ||||||||||
72.43.1a | R | |||||||||
72.43.1b | R | |||||||||
72.43.2a | R | |||||||||
72.43.2b | R | |||||||||
72.43.2c | R | |||||||||
72.43.2d | R | |||||||||
72.43.3a | R | |||||||||
72.43.3b | R | |||||||||
72.43.6a | R |
magma: CharacterTable(G);