Show commands:
Magma
magma: G := TransitiveGroup(36, 21);
Group action invariants
Degree $n$: | $36$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $21$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $S_3\times A_4$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $12$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,13,27,3,16,25)(2,14,28,4,15,26)(5,9,31,33,19,21)(6,10,32,34,20,22)(7,12,29,36,17,23)(8,11,30,35,18,24), (1,34,7)(2,33,8)(3,36,6)(4,35,5)(9,17,15,10,18,16)(11,20,14,12,19,13)(21,29,28,22,30,27)(23,31,25,24,32,26) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $3$: $C_3$ $6$: $S_3$, $C_6$ $12$: $A_4$ $18$: $S_3\times C_3$ $24$: $A_4\times C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: None
Degree 6: $C_6$, $S_3$, $A_4$, $S_3\times C_3$, $A_4\times C_2$
Degree 9: $S_3\times C_3$
Degree 12: $A_4 \times C_2$
Degree 18: $S_3 \times C_3$, 18T31, 18T32
Low degree siblings
12T43, 18T31, 18T32, 24T78, 24T83, 36T50, 36T51Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{36}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{12},1^{12}$ | $3$ | $2$ | $12$ | $( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)$ |
2B | $2^{18}$ | $3$ | $2$ | $18$ | $( 1, 3)( 2, 4)( 5,33)( 6,34)( 7,36)( 8,35)( 9,19)(10,20)(11,18)(12,17)(13,16)(14,15)(21,31)(22,32)(23,29)(24,30)(25,27)(26,28)$ |
2C | $2^{18}$ | $9$ | $2$ | $18$ | $( 1, 3)( 2, 4)( 5,33)( 6,34)( 7,36)( 8,35)( 9,20)(10,19)(11,17)(12,18)(13,15)(14,16)(21,32)(22,31)(23,30)(24,29)(25,28)(26,27)$ |
3A | $3^{12}$ | $2$ | $3$ | $24$ | $( 1, 7,34)( 2, 8,33)( 3, 6,36)( 4, 5,35)( 9,15,18)(10,16,17)(11,14,19)(12,13,20)(21,28,30)(22,27,29)(23,25,32)(24,26,31)$ |
3B1 | $3^{12}$ | $4$ | $3$ | $24$ | $( 1,16,27)( 2,15,28)( 3,13,25)( 4,14,26)( 5,19,31)( 6,20,32)( 7,17,29)( 8,18,30)( 9,21,33)(10,22,34)(11,24,35)(12,23,36)$ |
3B-1 | $3^{12}$ | $4$ | $3$ | $24$ | $( 1,27,16)( 2,28,15)( 3,25,13)( 4,26,14)( 5,31,19)( 6,32,20)( 7,29,17)( 8,30,18)( 9,33,21)(10,34,22)(11,35,24)(12,36,23)$ |
3C1 | $3^{12}$ | $8$ | $3$ | $24$ | $( 1,29,10)( 2,30, 9)( 3,32,12)( 4,31,11)( 5,24,14)( 6,23,13)( 7,22,16)( 8,21,15)(17,34,27)(18,33,28)(19,35,26)(20,36,25)$ |
3C-1 | $3^{12}$ | $8$ | $3$ | $24$ | $( 1,17,22)( 2,18,21)( 3,20,23)( 4,19,24)( 5,11,26)( 6,12,25)( 7,10,27)( 8, 9,28)(13,32,36)(14,31,35)(15,30,33)(16,29,34)$ |
6A | $6^{4},3^{4}$ | $6$ | $6$ | $28$ | $( 1, 7,34)( 2, 8,33)( 3, 6,36)( 4, 5,35)( 9,16,18,10,15,17)(11,13,19,12,14,20)(21,27,30,22,28,29)(23,26,32,24,25,31)$ |
6B1 | $6^{6}$ | $12$ | $6$ | $30$ | $( 1,25,16, 3,27,13)( 2,26,15, 4,28,14)( 5,21,19,33,31, 9)( 6,22,20,34,32,10)( 7,23,17,36,29,12)( 8,24,18,35,30,11)$ |
6B-1 | $6^{6}$ | $12$ | $6$ | $30$ | $( 1,13,27, 3,16,25)( 2,14,28, 4,15,26)( 5, 9,31,33,19,21)( 6,10,32,34,20,22)( 7,12,29,36,17,23)( 8,11,30,35,18,24)$ |
Malle's constant $a(G)$: $1/12$
magma: ConjugacyClasses(G);
Group invariants
Order: | $72=2^{3} \cdot 3^{2}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 72.44 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 2B | 2C | 3A | 3B1 | 3B-1 | 3C1 | 3C-1 | 6A | 6B1 | 6B-1 | ||
Size | 1 | 3 | 3 | 9 | 2 | 4 | 4 | 8 | 8 | 6 | 12 | 12 | |
2 P | 1A | 1A | 1A | 1A | 3A | 3B-1 | 3B1 | 3C-1 | 3C1 | 3A | 3B1 | 3B-1 | |
3 P | 1A | 2A | 2B | 2C | 1A | 1A | 1A | 1A | 1A | 2A | 2B | 2B | |
Type | |||||||||||||
72.44.1a | R | ||||||||||||
72.44.1b | R | ||||||||||||
72.44.1c1 | C | ||||||||||||
72.44.1c2 | C | ||||||||||||
72.44.1d1 | C | ||||||||||||
72.44.1d2 | C | ||||||||||||
72.44.2a | R | ||||||||||||
72.44.2b1 | C | ||||||||||||
72.44.2b2 | C | ||||||||||||
72.44.3a | R | ||||||||||||
72.44.3b | R | ||||||||||||
72.44.6a | R |
magma: CharacterTable(G);