Properties

Label 36T21
36T21 1 13 1->13 34 1->34 2 14 2->14 33 2->33 3 16 3->16 36 3->36 4 15 4->15 35 4->35 5 5->4 9 5->9 6 6->3 10 6->10 7 7->1 12 7->12 8 8->2 11 8->11 17 9->17 31 9->31 18 10->18 32 10->32 20 11->20 30 11->30 19 12->19 29 12->29 13->11 27 13->27 14->12 28 14->28 15->10 26 15->26 16->9 25 16->25 17->15 23 17->23 18->16 24 18->24 19->13 21 19->21 20->14 22 20->22 21->5 21->29 22->6 22->30 23->7 23->31 24->8 24->32 25->1 25->24 26->2 26->23 27->3 27->21 28->4 28->22 29->28 29->36 30->27 30->35 31->25 31->33 32->26 32->34 33->8 33->19 34->7 34->20 35->5 35->18 36->6 36->17
Degree $36$
Order $72$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group no
Group: $S_3\times A_4$

Related objects

Downloads

Learn more

Show commands: Magma

Copy content magma:G := TransitiveGroup(36, 21);
 

Group invariants

Abstract group:  $S_3\times A_4$
Copy content magma:IdentifyGroup(G);
 
Order:  $72=2^{3} \cdot 3^{2}$
Copy content magma:Order(G);
 
Cyclic:  no
Copy content magma:IsCyclic(G);
 
Abelian:  no
Copy content magma:IsAbelian(G);
 
Solvable:  yes
Copy content magma:IsSolvable(G);
 
Nilpotency class:   not nilpotent
Copy content magma:NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $36$
Copy content magma:t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $21$
Copy content magma:t, n := TransitiveGroupIdentification(G); t;
 
Parity:  $1$
Copy content magma:IsEven(G);
 
Primitive:  no
Copy content magma:IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $12$
Copy content magma:Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(1,13,27,3,16,25)(2,14,28,4,15,26)(5,9,31,33,19,21)(6,10,32,34,20,22)(7,12,29,36,17,23)(8,11,30,35,18,24)$, $(1,34,7)(2,33,8)(3,36,6)(4,35,5)(9,17,15,10,18,16)(11,20,14,12,19,13)(21,29,28,22,30,27)(23,31,25,24,32,26)$
Copy content magma:Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$
$3$:  $C_3$
$6$:  $S_3$, $C_6$
$12$:  $A_4$
$18$:  $S_3\times C_3$
$24$:  $A_4\times C_2$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 3: $C_3$, $S_3$

Degree 4: None

Degree 6: $C_6$, $S_3$, $A_4$, $S_3\times C_3$, $A_4\times C_2$

Degree 9: $S_3\times C_3$

Degree 12: $A_4 \times C_2$

Degree 18: $S_3 \times C_3$, 18T31, 18T32

Low degree siblings

12T43, 18T31, 18T32, 24T78, 24T83, 36T50, 36T51

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{36}$ $1$ $1$ $0$ $()$
2A $2^{12},1^{12}$ $3$ $2$ $12$ $( 1, 2)( 3, 4)( 5, 6)( 7, 8)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)$
2B $2^{18}$ $3$ $2$ $18$ $( 1, 6)( 2, 5)( 3, 7)( 4, 8)( 9,11)(10,12)(13,17)(14,18)(15,19)(16,20)(21,24)(22,23)(25,29)(26,30)(27,32)(28,31)(33,35)(34,36)$
2C $2^{18}$ $9$ $2$ $18$ $( 1, 4)( 2, 3)( 5,34)( 6,33)( 7,35)( 8,36)( 9,20)(10,19)(11,17)(12,18)(13,15)(14,16)(21,31)(22,32)(23,29)(24,30)(25,27)(26,28)$
3A $3^{12}$ $2$ $3$ $24$ $( 1, 7,34)( 2, 8,33)( 3, 6,36)( 4, 5,35)( 9,15,18)(10,16,17)(11,14,19)(12,13,20)(21,28,30)(22,27,29)(23,25,32)(24,26,31)$
3B1 $3^{12}$ $4$ $3$ $24$ $( 1,16,28)( 2,15,27)( 3,13,26)( 4,14,25)( 5,19,32)( 6,20,31)( 7,17,30)( 8,18,29)( 9,22,33)(10,21,34)(11,23,35)(12,24,36)$
3B-1 $3^{12}$ $4$ $3$ $24$ $( 1,28,16)( 2,27,15)( 3,26,13)( 4,25,14)( 5,32,19)( 6,31,20)( 7,30,17)( 8,29,18)( 9,33,22)(10,34,21)(11,35,23)(12,36,24)$
3C1 $3^{12}$ $8$ $3$ $24$ $( 1,29,10)( 2,30, 9)( 3,32,12)( 4,31,11)( 5,24,14)( 6,23,13)( 7,22,16)( 8,21,15)(17,34,27)(18,33,28)(19,35,26)(20,36,25)$
3C-1 $3^{12}$ $8$ $3$ $24$ $( 1,17,22)( 2,18,21)( 3,20,23)( 4,19,24)( 5,11,26)( 6,12,25)( 7,10,27)( 8, 9,28)(13,32,36)(14,31,35)(15,30,33)(16,29,34)$
6A $6^{4},3^{4}$ $6$ $6$ $28$ $( 1,33, 7, 2,34, 8)( 3,35, 6, 4,36, 5)( 9,18,15)(10,17,16)(11,19,14)(12,20,13)(21,29,28,22,30,27)(23,31,25,24,32,26)$
6B1 $6^{6}$ $12$ $6$ $30$ $( 1,31,16, 6,28,20)( 2,32,15, 5,27,19)( 3,30,13, 7,26,17)( 4,29,14, 8,25,18)( 9,35,22,11,33,23)(10,36,21,12,34,24)$
6B-1 $6^{6}$ $12$ $6$ $30$ $( 1,20,28, 6,16,31)( 2,19,27, 5,15,32)( 3,17,26, 7,13,30)( 4,18,25, 8,14,29)( 9,23,33,11,22,35)(10,24,34,12,21,36)$

Malle's constant $a(G)$:     $1/12$

Copy content magma:ConjugacyClasses(G);
 

Character table

1A 2A 2B 2C 3A 3B1 3B-1 3C1 3C-1 6A 6B1 6B-1
Size 1 3 3 9 2 4 4 8 8 6 12 12
2 P 1A 1A 1A 1A 3A 3B-1 3B1 3C-1 3C1 3A 3B1 3B-1
3 P 1A 2A 2B 2C 1A 1A 1A 1A 1A 2A 2B 2B
Type
72.44.1a R 1 1 1 1 1 1 1 1 1 1 1 1
72.44.1b R 1 1 1 1 1 1 1 1 1 1 1 1
72.44.1c1 C 1 1 1 1 1 ζ31 ζ3 ζ3 ζ31 1 ζ3 ζ31
72.44.1c2 C 1 1 1 1 1 ζ3 ζ31 ζ31 ζ3 1 ζ31 ζ3
72.44.1d1 C 1 1 1 1 1 ζ31 ζ3 ζ3 ζ31 1 ζ3 ζ31
72.44.1d2 C 1 1 1 1 1 ζ3 ζ31 ζ31 ζ3 1 ζ31 ζ3
72.44.2a R 2 2 0 0 1 2 2 1 1 1 0 0
72.44.2b1 C 2 2 0 0 1 2ζ31 2ζ3 ζ3 ζ31 1 0 0
72.44.2b2 C 2 2 0 0 1 2ζ3 2ζ31 ζ31 ζ3 1 0 0
72.44.3a R 3 1 3 1 3 0 0 0 0 1 0 0
72.44.3b R 3 1 3 1 3 0 0 0 0 1 0 0
72.44.6a R 6 2 0 0 3 0 0 0 0 1 0 0

Copy content magma:CharacterTable(G);
 

Regular extensions

Data not computed