Show commands: Magma
Group invariants
| Abstract group: | $S_3\times A_4$ |
| |
| Order: | $72=2^{3} \cdot 3^{2}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $36$ |
| |
| Transitive number $t$: | $21$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $12$ |
| |
| Generators: | $(1,13,27,3,16,25)(2,14,28,4,15,26)(5,9,31,33,19,21)(6,10,32,34,20,22)(7,12,29,36,17,23)(8,11,30,35,18,24)$, $(1,34,7)(2,33,8)(3,36,6)(4,35,5)(9,17,15,10,18,16)(11,20,14,12,19,13)(21,29,28,22,30,27)(23,31,25,24,32,26)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $3$: $C_3$ $6$: $S_3$, $C_6$ $12$: $A_4$ $18$: $S_3\times C_3$ $24$: $A_4\times C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: None
Degree 6: $C_6$, $S_3$, $A_4$, $S_3\times C_3$, $A_4\times C_2$
Degree 9: $S_3\times C_3$
Degree 12: $A_4 \times C_2$
Degree 18: $S_3 \times C_3$, 18T31, 18T32
Low degree siblings
12T43, 18T31, 18T32, 24T78, 24T83, 36T50, 36T51Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{36}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{12},1^{12}$ | $3$ | $2$ | $12$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)$ |
| 2B | $2^{18}$ | $3$ | $2$ | $18$ | $( 1, 6)( 2, 5)( 3, 7)( 4, 8)( 9,11)(10,12)(13,17)(14,18)(15,19)(16,20)(21,24)(22,23)(25,29)(26,30)(27,32)(28,31)(33,35)(34,36)$ |
| 2C | $2^{18}$ | $9$ | $2$ | $18$ | $( 1, 4)( 2, 3)( 5,34)( 6,33)( 7,35)( 8,36)( 9,20)(10,19)(11,17)(12,18)(13,15)(14,16)(21,31)(22,32)(23,29)(24,30)(25,27)(26,28)$ |
| 3A | $3^{12}$ | $2$ | $3$ | $24$ | $( 1, 7,34)( 2, 8,33)( 3, 6,36)( 4, 5,35)( 9,15,18)(10,16,17)(11,14,19)(12,13,20)(21,28,30)(22,27,29)(23,25,32)(24,26,31)$ |
| 3B1 | $3^{12}$ | $4$ | $3$ | $24$ | $( 1,16,28)( 2,15,27)( 3,13,26)( 4,14,25)( 5,19,32)( 6,20,31)( 7,17,30)( 8,18,29)( 9,22,33)(10,21,34)(11,23,35)(12,24,36)$ |
| 3B-1 | $3^{12}$ | $4$ | $3$ | $24$ | $( 1,28,16)( 2,27,15)( 3,26,13)( 4,25,14)( 5,32,19)( 6,31,20)( 7,30,17)( 8,29,18)( 9,33,22)(10,34,21)(11,35,23)(12,36,24)$ |
| 3C1 | $3^{12}$ | $8$ | $3$ | $24$ | $( 1,29,10)( 2,30, 9)( 3,32,12)( 4,31,11)( 5,24,14)( 6,23,13)( 7,22,16)( 8,21,15)(17,34,27)(18,33,28)(19,35,26)(20,36,25)$ |
| 3C-1 | $3^{12}$ | $8$ | $3$ | $24$ | $( 1,17,22)( 2,18,21)( 3,20,23)( 4,19,24)( 5,11,26)( 6,12,25)( 7,10,27)( 8, 9,28)(13,32,36)(14,31,35)(15,30,33)(16,29,34)$ |
| 6A | $6^{4},3^{4}$ | $6$ | $6$ | $28$ | $( 1,33, 7, 2,34, 8)( 3,35, 6, 4,36, 5)( 9,18,15)(10,17,16)(11,19,14)(12,20,13)(21,29,28,22,30,27)(23,31,25,24,32,26)$ |
| 6B1 | $6^{6}$ | $12$ | $6$ | $30$ | $( 1,31,16, 6,28,20)( 2,32,15, 5,27,19)( 3,30,13, 7,26,17)( 4,29,14, 8,25,18)( 9,35,22,11,33,23)(10,36,21,12,34,24)$ |
| 6B-1 | $6^{6}$ | $12$ | $6$ | $30$ | $( 1,20,28, 6,16,31)( 2,19,27, 5,15,32)( 3,17,26, 7,13,30)( 4,18,25, 8,14,29)( 9,23,33,11,22,35)(10,24,34,12,21,36)$ |
Malle's constant $a(G)$: $1/12$
Character table
| 1A | 2A | 2B | 2C | 3A | 3B1 | 3B-1 | 3C1 | 3C-1 | 6A | 6B1 | 6B-1 | ||
| Size | 1 | 3 | 3 | 9 | 2 | 4 | 4 | 8 | 8 | 6 | 12 | 12 | |
| 2 P | 1A | 1A | 1A | 1A | 3A | 3B-1 | 3B1 | 3C-1 | 3C1 | 3A | 3B1 | 3B-1 | |
| 3 P | 1A | 2A | 2B | 2C | 1A | 1A | 1A | 1A | 1A | 2A | 2B | 2B | |
| Type | |||||||||||||
| 72.44.1a | R | ||||||||||||
| 72.44.1b | R | ||||||||||||
| 72.44.1c1 | C | ||||||||||||
| 72.44.1c2 | C | ||||||||||||
| 72.44.1d1 | C | ||||||||||||
| 72.44.1d2 | C | ||||||||||||
| 72.44.2a | R | ||||||||||||
| 72.44.2b1 | C | ||||||||||||
| 72.44.2b2 | C | ||||||||||||
| 72.44.3a | R | ||||||||||||
| 72.44.3b | R | ||||||||||||
| 72.44.6a | R |
Regular extensions
Data not computed