Show commands:
Magma
magma: G := TransitiveGroup(36, 20);
Group action invariants
Degree $n$: | $36$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $20$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $C_3\times S_4$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $12$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,12,28,36,15,23,2,11,27,35,16,24)(3,10,25,34,14,22,4,9,26,33,13,21)(5,17,31,7,20,30)(6,18,32,8,19,29), (1,4)(2,3)(5,34)(6,33)(7,36)(8,35)(9,20)(10,19)(11,17)(12,18)(13,15)(14,16)(21,31)(22,32)(23,29)(24,30)(25,27)(26,28) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $3$: $C_3$ $6$: $S_3$, $C_6$ $18$: $S_3\times C_3$ $24$: $S_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: None
Degree 6: $C_6$, $S_3$, $S_3\times C_3$, $S_4$, $S_4$
Degree 9: $S_3\times C_3$
Degree 12: $S_4$
Degree 18: $S_3 \times C_3$, 18T30, 18T33
Low degree siblings
12T45, 18T30, 18T33, 24T80, 24T84, 36T52Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{36}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{12},1^{12}$ | $3$ | $2$ | $12$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)(13,14)(15,16)(17,18)(19,20)(25,26)(27,28)(29,30)(31,32)$ |
2B | $2^{18}$ | $6$ | $2$ | $18$ | $( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,12)(10,11)(13,18)(14,17)(15,20)(16,19)(21,23)(22,24)(25,29)(26,30)(27,31)(28,32)(33,36)(34,35)$ |
3A1 | $3^{12}$ | $1$ | $3$ | $24$ | $( 1,15,27)( 2,16,28)( 3,14,26)( 4,13,25)( 5,20,31)( 6,19,32)( 7,17,30)( 8,18,29)( 9,21,34)(10,22,33)(11,24,36)(12,23,35)$ |
3A-1 | $3^{12}$ | $1$ | $3$ | $24$ | $( 1,27,15)( 2,28,16)( 3,26,14)( 4,25,13)( 5,31,20)( 6,32,19)( 7,30,17)( 8,29,18)( 9,34,21)(10,33,22)(11,36,24)(12,35,23)$ |
3B | $3^{12}$ | $8$ | $3$ | $24$ | $( 1,30,10)( 2,29, 9)( 3,31,12)( 4,32,11)( 5,23,14)( 6,24,13)( 7,22,15)( 8,21,16)(17,33,27)(18,34,28)(19,36,25)(20,35,26)$ |
3C1 | $3^{12}$ | $8$ | $3$ | $24$ | $( 1,10,30)( 2, 9,29)( 3,12,31)( 4,11,32)( 5,14,23)( 6,13,24)( 7,15,22)( 8,16,21)(17,27,33)(18,28,34)(19,25,36)(20,26,35)$ |
3C-1 | $3^{12}$ | $8$ | $3$ | $24$ | $( 1, 8,34)( 2, 7,33)( 3, 6,36)( 4, 5,35)( 9,15,18)(10,16,17)(11,14,19)(12,13,20)(21,27,29)(22,28,30)(23,25,31)(24,26,32)$ |
4A | $4^{6},2^{6}$ | $6$ | $4$ | $24$ | $( 1, 5, 2, 6)( 3, 7, 4, 8)( 9,11)(10,12)(13,18,14,17)(15,20,16,19)(21,24)(22,23)(25,29,26,30)(27,31,28,32)(33,35)(34,36)$ |
6A1 | $6^{4},3^{4}$ | $3$ | $6$ | $28$ | $( 1,28,15, 2,27,16)( 3,25,14, 4,26,13)( 5,32,20, 6,31,19)( 7,29,17, 8,30,18)( 9,34,21)(10,33,22)(11,36,24)(12,35,23)$ |
6A-1 | $6^{4},3^{4}$ | $3$ | $6$ | $28$ | $( 1,16,27, 2,15,28)( 3,13,26, 4,14,25)( 5,19,31, 6,20,32)( 7,18,30, 8,17,29)( 9,21,34)(10,22,33)(11,24,36)(12,23,35)$ |
6B1 | $6^{6}$ | $6$ | $6$ | $30$ | $( 1,31,15, 5,27,20)( 2,32,16, 6,28,19)( 3,30,14, 7,26,17)( 4,29,13, 8,25,18)( 9,35,21,12,34,23)(10,36,22,11,33,24)$ |
6B-1 | $6^{6}$ | $6$ | $6$ | $30$ | $( 1,20,27, 5,15,31)( 2,19,28, 6,16,32)( 3,17,26, 7,14,30)( 4,18,25, 8,13,29)( 9,23,34,12,21,35)(10,24,33,11,22,36)$ |
12A1 | $12^{2},6^{2}$ | $6$ | $12$ | $32$ | $( 1,19,28, 5,15,32, 2,20,27, 6,16,31)( 3,18,25, 7,14,29, 4,17,26, 8,13,30)( 9,24,34,11,21,36)(10,23,33,12,22,35)$ |
12A-1 | $12^{2},6^{2}$ | $6$ | $12$ | $32$ | $( 1,32,16, 5,27,19, 2,31,15, 6,28,20)( 3,29,13, 7,26,18, 4,30,14, 8,25,17)( 9,36,21,11,34,24)(10,35,22,12,33,23)$ |
Malle's constant $a(G)$: $1/12$
magma: ConjugacyClasses(G);
Group invariants
Order: | $72=2^{3} \cdot 3^{2}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 72.42 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 2B | 3A1 | 3A-1 | 3B | 3C1 | 3C-1 | 4A | 6A1 | 6A-1 | 6B1 | 6B-1 | 12A1 | 12A-1 | ||
Size | 1 | 3 | 6 | 1 | 1 | 8 | 8 | 8 | 6 | 3 | 3 | 6 | 6 | 6 | 6 | |
2 P | 1A | 1A | 1A | 3A-1 | 3A1 | 3C-1 | 3C1 | 3B | 2A | 3A1 | 3A-1 | 3A1 | 3A-1 | 6A1 | 6A-1 | |
3 P | 1A | 2A | 2B | 1A | 1A | 1A | 1A | 1A | 4A | 2A | 2A | 2B | 2B | 4A | 4A | |
Type | ||||||||||||||||
72.42.1a | R | |||||||||||||||
72.42.1b | R | |||||||||||||||
72.42.1c1 | C | |||||||||||||||
72.42.1c2 | C | |||||||||||||||
72.42.1d1 | C | |||||||||||||||
72.42.1d2 | C | |||||||||||||||
72.42.2a | R | |||||||||||||||
72.42.2b1 | C | |||||||||||||||
72.42.2b2 | C | |||||||||||||||
72.42.3a | R | |||||||||||||||
72.42.3b | R | |||||||||||||||
72.42.3c1 | C | |||||||||||||||
72.42.3c2 | C | |||||||||||||||
72.42.3d1 | C | |||||||||||||||
72.42.3d2 | C |
magma: CharacterTable(G);