Group action invariants
| Degree $n$ : | $36$ | |
| Transitive number $t$ : | $19$ | |
| Group : | $C_3\times C_3:D_4$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,34,7,2,33,8)(3,35,6)(4,36,5)(9,17,16,10,18,15)(11,19,13)(12,20,14)(21,30,28,22,29,27)(23,31,25)(24,32,26), (1,23,16,36,27,12,2,24,15,35,28,11)(3,21,13,33,25,9,4,22,14,34,26,10)(5,30,20,8,32,17,6,29,19,7,31,18) | |
| $|\Aut(F/K)|$: | $18$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 3: $C_3$ 4: $C_2^2$ 6: $S_3$, $C_6$ x 3 8: $D_{4}$ 12: $D_{6}$ 18: $S_3\times C_3$ Resolvents shown for degrees $\leq 10$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Degree 6: $C_6$, $S_3$, $S_3\times C_3$
Degree 9: $S_3\times C_3$
Degree 12: $D_4 \times C_3$, $(C_6\times C_2):C_2$, 12T42 x 2
Degree 18: $S_3 \times C_3$
Low degree siblings
There are no siblings with degree $\leq 10$
Data on whether or not a number field with this Galois group has arithmetically equivalent fields has not been computed.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 3, 4)( 5, 6)(11,12)(13,14)(19,20)(23,24)(25,26)(31,32)(35,36)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22) (23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $6$ | $2$ | $( 1, 3)( 2, 4)( 5,34)( 6,33)( 7,35)( 8,36)( 9,19)(10,20)(11,18)(12,17)(13,16) (14,15)(21,32)(22,31)(23,30)(24,29)(25,27)(26,28)$ |
| $ 4, 4, 4, 4, 4, 4, 4, 4, 4 $ | $6$ | $4$ | $( 1, 3, 2, 4)( 5,33, 6,34)( 7,35, 8,36)( 9,19,10,20)(11,17,12,18)(13,15,14,16) (21,32,22,31)(23,29,24,30)(25,28,26,27)$ |
| $ 6, 6, 6, 3, 3, 3, 3, 3, 3 $ | $2$ | $6$ | $( 1, 7,33)( 2, 8,34)( 3, 5,35, 4, 6,36)( 9,16,18)(10,15,17)(11,14,19,12,13,20) (21,28,29)(22,27,30)(23,26,31,24,25,32)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 7,33)( 2, 8,34)( 3, 6,35)( 4, 5,36)( 9,16,18)(10,15,17)(11,13,19) (12,14,20)(21,28,29)(22,27,30)(23,25,31)(24,26,32)$ |
| $ 6, 6, 6, 6, 6, 6 $ | $2$ | $6$ | $( 1, 8,33, 2, 7,34)( 3, 5,35, 4, 6,36)( 9,15,18,10,16,17)(11,14,19,12,13,20) (21,27,29,22,28,30)(23,26,31,24,25,32)$ |
| $ 6, 6, 6, 3, 3, 3, 3, 3, 3 $ | $2$ | $6$ | $( 1, 8,33, 2, 7,34)( 3, 6,35)( 4, 5,36)( 9,15,18,10,16,17)(11,13,19)(12,14,20) (21,27,29,22,28,30)(23,25,31)(24,26,32)$ |
| $ 6, 6, 6, 6, 6, 6 $ | $2$ | $6$ | $( 1, 9,30, 2,10,29)( 3,11,31, 4,12,32)( 5,14,24, 6,13,23)( 7,16,22, 8,15,21) (17,28,33,18,27,34)(19,25,36,20,26,35)$ |
| $ 6, 6, 6, 3, 3, 3, 3, 3, 3 $ | $2$ | $6$ | $( 1, 9,30, 2,10,29)( 3,12,31)( 4,11,32)( 5,13,24)( 6,14,23)( 7,16,22, 8,15,21) (17,28,33,18,27,34)(19,26,36)(20,25,35)$ |
| $ 6, 6, 6, 3, 3, 3, 3, 3, 3 $ | $2$ | $6$ | $( 1,10,30)( 2, 9,29)( 3,11,31, 4,12,32)( 5,14,24, 6,13,23)( 7,15,22)( 8,16,21) (17,27,33)(18,28,34)(19,25,36,20,26,35)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1,10,30)( 2, 9,29)( 3,12,31)( 4,11,32)( 5,13,24)( 6,14,23)( 7,15,22) ( 8,16,21)(17,27,33)(18,28,34)(19,26,36)(20,25,35)$ |
| $ 6, 6, 6, 6, 6, 6 $ | $6$ | $6$ | $( 1,11,27,36,15,24)( 2,12,28,35,16,23)( 3, 9,25,34,14,21)( 4,10,26,33,13,22) ( 5,17,32, 7,19,30)( 6,18,31, 8,20,29)$ |
| $ 12, 12, 12 $ | $6$ | $12$ | $( 1,11,28,35,15,24, 2,12,27,36,16,23)( 3,10,26,34,14,22, 4, 9,25,33,13,21) ( 5,18,31, 7,19,29, 6,17,32, 8,20,30)$ |
| $ 6, 6, 6, 3, 3, 3, 3, 3, 3 $ | $2$ | $6$ | $( 1,15,27)( 2,16,28)( 3,13,25, 4,14,26)( 5,20,32, 6,19,31)( 7,17,30)( 8,18,29) ( 9,21,34)(10,22,33)(11,23,36,12,24,35)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $1$ | $3$ | $( 1,15,27)( 2,16,28)( 3,14,25)( 4,13,26)( 5,19,32)( 6,20,31)( 7,17,30) ( 8,18,29)( 9,21,34)(10,22,33)(11,24,36)(12,23,35)$ |
| $ 6, 6, 6, 6, 6, 6 $ | $1$ | $6$ | $( 1,16,27, 2,15,28)( 3,13,25, 4,14,26)( 5,20,32, 6,19,31)( 7,18,30, 8,17,29) ( 9,22,34,10,21,33)(11,23,36,12,24,35)$ |
| $ 6, 6, 6, 3, 3, 3, 3, 3, 3 $ | $2$ | $6$ | $( 1,21,17, 2,22,18)( 3,23,20)( 4,24,19)( 5,26,11)( 6,25,12)( 7,28,10, 8,27, 9) (13,36,32)(14,35,31)(15,34,30,16,33,29)$ |
| $ 6, 6, 6, 6, 6, 6 $ | $2$ | $6$ | $( 1,21,17, 2,22,18)( 3,24,20, 4,23,19)( 5,25,11, 6,26,12)( 7,28,10, 8,27, 9) (13,35,32,14,36,31)(15,34,30,16,33,29)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1,22,17)( 2,21,18)( 3,23,20)( 4,24,19)( 5,26,11)( 6,25,12)( 7,27,10) ( 8,28, 9)(13,36,32)(14,35,31)(15,33,30)(16,34,29)$ |
| $ 6, 6, 6, 3, 3, 3, 3, 3, 3 $ | $2$ | $6$ | $( 1,22,17)( 2,21,18)( 3,24,20, 4,23,19)( 5,25,11, 6,26,12)( 7,27,10)( 8,28, 9) (13,35,32,14,36,31)(15,33,30)(16,34,29)$ |
| $ 12, 12, 12 $ | $6$ | $12$ | $( 1,23,16,36,27,12, 2,24,15,35,28,11)( 3,21,13,33,25, 9, 4,22,14,34,26,10) ( 5,30,20, 8,32,17, 6,29,19, 7,31,18)$ |
| $ 6, 6, 6, 6, 6, 6 $ | $6$ | $6$ | $( 1,23,15,35,27,12)( 2,24,16,36,28,11)( 3,22,14,33,25,10)( 4,21,13,34,26, 9) ( 5,29,19, 8,32,18)( 6,30,20, 7,31,17)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $1$ | $3$ | $( 1,27,15)( 2,28,16)( 3,25,14)( 4,26,13)( 5,32,19)( 6,31,20)( 7,30,17) ( 8,29,18)( 9,34,21)(10,33,22)(11,36,24)(12,35,23)$ |
| $ 6, 6, 6, 3, 3, 3, 3, 3, 3 $ | $2$ | $6$ | $( 1,27,15)( 2,28,16)( 3,26,14, 4,25,13)( 5,31,19, 6,32,20)( 7,30,17)( 8,29,18) ( 9,34,21)(10,33,22)(11,35,24,12,36,23)$ |
| $ 6, 6, 6, 6, 6, 6 $ | $1$ | $6$ | $( 1,28,15, 2,27,16)( 3,26,14, 4,25,13)( 5,31,19, 6,32,20)( 7,29,17, 8,30,18) ( 9,33,21,10,34,22)(11,35,24,12,36,23)$ |
Group invariants
| Order: | $72=2^{3} \cdot 3^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [72, 30] |
| Character table: Data not available. |