Group action invariants
| Degree $n$ : | $36$ | |
| Transitive number $t$ : | $185$ | |
| Group : | $(C_2\times C_{18}):C_6$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,24,2,23)(3,21,4,22)(5,19,6,20)(7,18,8,17)(9,15,10,16)(11,13,12,14)(25,36,26,35)(27,33,28,34)(29,32,30,31), (1,31,33,14,8,9,25,19,21)(2,32,34,13,7,10,26,20,22)(3,29,35,15,5,11,27,17,23,4,30,36,16,6,12,28,18,24) | |
| $|\Aut(F/K)|$: | $6$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 3: $C_3$ 4: $C_2^2$ 6: $S_3$, $C_6$ x 3 8: $D_{4}$ 12: $D_{6}$ 18: $S_3\times C_3$ 54: $(C_9:C_3):C_2$ Resolvents shown for degrees $\leq 10$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 4: $D_{4}$
Degree 6: $S_3$
Degree 9: $(C_9:C_3):C_2$
Degree 12: $(C_6\times C_2):C_2$
Degree 18: 18T18
Low degree siblings
There are no siblings with degree $\leq 10$
Data on whether or not a number field with this Galois group has arithmetically equivalent fields has not been computed.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $3$ | $3$ | $( 5,18,30)( 6,17,29)( 7,20,32)( 8,19,31)( 9,33,21)(10,34,22)(11,36,24) (12,35,23)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $3$ | $3$ | $( 5,30,18)( 6,29,17)( 7,32,20)( 8,31,19)( 9,21,33)(10,22,34)(11,24,36) (12,23,35)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 3, 4)( 5, 6)(11,12)(15,16)(17,18)(23,24)(27,28)(29,30)(35,36)$ |
| $ 6, 6, 3, 3, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $6$ | $6$ | $( 3, 4)( 5,17,30, 6,18,29)( 7,20,32)( 8,19,31)( 9,33,21)(10,34,22) (11,35,24,12,36,23)(15,16)(27,28)$ |
| $ 6, 6, 3, 3, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $6$ | $6$ | $( 3, 4)( 5,29,18, 6,30,17)( 7,32,20)( 8,31,19)( 9,21,33)(10,22,34) (11,23,36,12,24,35)(15,16)(27,28)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22) (23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)$ |
| $ 6, 6, 6, 6, 2, 2, 2, 2, 2, 2 $ | $3$ | $6$ | $( 1, 2)( 3, 4)( 5,17,30, 6,18,29)( 7,19,32, 8,20,31)( 9,34,21,10,33,22) (11,35,24,12,36,23)(13,14)(15,16)(25,26)(27,28)$ |
| $ 6, 6, 6, 6, 2, 2, 2, 2, 2, 2 $ | $3$ | $6$ | $( 1, 2)( 3, 4)( 5,29,18, 6,30,17)( 7,31,20, 8,32,19)( 9,22,33,10,21,34) (11,23,36,12,24,35)(13,14)(15,16)(25,26)(27,28)$ |
| $ 6, 6, 6, 6, 2, 2, 2, 2, 2, 2 $ | $18$ | $6$ | $( 1, 3)( 2, 4)( 5, 9,18,33,30,21)( 6,10,17,34,29,22)( 7,11,20,36,32,24) ( 8,12,19,35,31,23)(13,28)(14,27)(15,26)(16,25)$ |
| $ 6, 6, 6, 6, 2, 2, 2, 2, 2, 2 $ | $18$ | $6$ | $( 1, 3)( 2, 4)( 5,21,30,33,18, 9)( 6,22,29,34,17,10)( 7,24,32,36,20,11) ( 8,23,31,35,19,12)(13,28)(14,27)(15,26)(16,25)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $18$ | $2$ | $( 1, 3)( 2, 4)( 5,33)( 6,34)( 7,36)( 8,35)( 9,30)(10,29)(11,32)(12,31)(13,28) (14,27)(15,26)(16,25)(17,22)(18,21)(19,23)(20,24)$ |
| $ 12, 12, 4, 4, 4 $ | $18$ | $12$ | $( 1, 3, 2, 4)( 5,10,17,33,30,22, 6, 9,18,34,29,21)( 7,11,19,35,32,24, 8,12,20, 36,31,23)(13,28,14,27)(15,25,16,26)$ |
| $ 12, 12, 4, 4, 4 $ | $18$ | $12$ | $( 1, 3, 2, 4)( 5,22,29,33,18,10, 6,21,30,34,17, 9)( 7,24,31,35,20,11, 8,23,32, 36,19,12)(13,28,14,27)(15,25,16,26)$ |
| $ 4, 4, 4, 4, 4, 4, 4, 4, 4 $ | $18$ | $4$ | $( 1, 3, 2, 4)( 5,34, 6,33)( 7,36, 8,35)( 9,30,10,29)(11,31,12,32)(13,28,14,27) (15,25,16,26)(17,21,18,22)(19,23,20,24)$ |
| $ 18, 9, 9 $ | $6$ | $18$ | $( 1, 7, 9,13,19,22,25,32,33, 2, 8,10,14,20,21,26,31,34)( 3, 5,12,16,18,23,27, 30,35)( 4, 6,11,15,17,24,28,29,36)$ |
| $ 18, 9, 9 $ | $6$ | $18$ | $( 1, 7,21,13,19,34,25,32, 9, 2, 8,22,14,20,33,26,31,10)( 3, 5,23,16,18,35,27, 30,12)( 4, 6,24,15,17,36,28,29,11)$ |
| $ 18, 9, 9 $ | $6$ | $18$ | $( 1, 7,33,13,19,10,25,32,21, 2, 8,34,14,20, 9,26,31,22)( 3, 5,35,16,18,12,27, 30,23)( 4, 6,36,15,17,11,28,29,24)$ |
| $ 18, 18 $ | $6$ | $18$ | $( 1, 7, 9,13,19,22,25,32,33, 2, 8,10,14,20,21,26,31,34)( 3, 6,12,15,18,24,27, 29,35, 4, 5,11,16,17,23,28,30,36)$ |
| $ 18, 18 $ | $6$ | $18$ | $( 1, 7,21,13,19,34,25,32, 9, 2, 8,22,14,20,33,26,31,10)( 3, 6,23,15,18,36,27, 29,12, 4, 5,24,16,17,35,28,30,11)$ |
| $ 18, 18 $ | $6$ | $18$ | $( 1, 7,33,13,19,10,25,32,21, 2, 8,34,14,20, 9,26,31,22)( 3, 6,35,15,18,11,27, 29,23, 4, 5,36,16,17,12,28,30,24)$ |
| $ 9, 9, 9, 9 $ | $6$ | $9$ | $( 1, 8, 9,14,19,21,25,31,33)( 2, 7,10,13,20,22,26,32,34)( 3, 5,12,16,18,23,27, 30,35)( 4, 6,11,15,17,24,28,29,36)$ |
| $ 9, 9, 9, 9 $ | $6$ | $9$ | $( 1, 8,21,14,19,33,25,31, 9)( 2, 7,22,13,20,34,26,32,10)( 3, 5,23,16,18,35,27, 30,12)( 4, 6,24,15,17,36,28,29,11)$ |
| $ 9, 9, 9, 9 $ | $6$ | $9$ | $( 1, 8,33,14,19, 9,25,31,21)( 2, 7,34,13,20,10,26,32,22)( 3, 5,35,16,18,12,27, 30,23)( 4, 6,36,15,17,11,28,29,24)$ |
| $ 18, 9, 9 $ | $6$ | $18$ | $( 1, 8, 9,14,19,21,25,31,33)( 2, 7,10,13,20,22,26,32,34)( 3, 6,12,15,18,24,27, 29,35, 4, 5,11,16,17,23,28,30,36)$ |
| $ 18, 9, 9 $ | $6$ | $18$ | $( 1, 8,21,14,19,33,25,31, 9)( 2, 7,22,13,20,34,26,32,10)( 3, 6,23,15,18,36,27, 29,12, 4, 5,24,16,17,35,28,30,11)$ |
| $ 18, 9, 9 $ | $6$ | $18$ | $( 1, 8,33,14,19, 9,25,31,21)( 2, 7,34,13,20,10,26,32,22)( 3, 6,35,15,18,11,27, 29,23, 4, 5,36,16,17,12,28,30,24)$ |
| $ 6, 6, 6, 6, 6, 6 $ | $2$ | $6$ | $( 1,13,25, 2,14,26)( 3,15,27, 4,16,28)( 5,17,30, 6,18,29)( 7,19,32, 8,20,31) ( 9,22,33,10,21,34)(11,23,36,12,24,35)$ |
| $ 6, 6, 6, 3, 3, 3, 3, 3, 3 $ | $2$ | $6$ | $( 1,13,25, 2,14,26)( 3,16,27)( 4,15,28)( 5,18,30)( 6,17,29)( 7,19,32, 8,20,31) ( 9,22,33,10,21,34)(11,24,36)(12,23,35)$ |
| $ 6, 6, 6, 3, 3, 3, 3, 3, 3 $ | $2$ | $6$ | $( 1,14,25)( 2,13,26)( 3,15,27, 4,16,28)( 5,17,30, 6,18,29)( 7,20,32)( 8,19,31) ( 9,21,33)(10,22,34)(11,23,36,12,24,35)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1,14,25)( 2,13,26)( 3,16,27)( 4,15,28)( 5,18,30)( 6,17,29)( 7,20,32) ( 8,19,31)( 9,21,33)(10,22,34)(11,24,36)(12,23,35)$ |
Group invariants
| Order: | $216=2^{3} \cdot 3^{3}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [216, 62] |
| Character table: Data not available. |