Show commands:
Magma
magma: G := TransitiveGroup(36, 16);
Group action invariants
Degree $n$: | $36$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $16$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $C_2^2:C_{18}$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $12$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,35,32,27,21,20,13,11,5)(2,36,31,28,22,19,14,12,6)(3,34,30,25,24,18,16,10,7)(4,33,29,26,23,17,15,9,8), (1,16,27,3,13,25)(2,15,28,4,14,26)(5,17,32,8,20,29)(6,18,31,7,19,30)(9,22,33,12,23,36)(10,21,34,11,24,35) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $3$: $C_3$ $6$: $C_6$ $9$: $C_9$ $12$: $A_4$ $18$: $C_{18}$ $24$: $A_4\times C_2$ $36$: $C_2^2 : C_9$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $C_3$
Degree 4: None
Degree 6: $C_6$, $A_4$, $A_4\times C_2$
Degree 9: $C_9$
Degree 12: $A_4 \times C_2$
Degree 18: $C_{18}$, $C_2^2 : C_9$, 18T26
Low degree siblings
18T26, 36T30Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{36}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{18}$ | $1$ | $2$ | $18$ | $( 1, 4)( 2, 3)( 5, 8)( 6, 7)( 9,11)(10,12)(13,15)(14,16)(17,20)(18,19)(21,23)(22,24)(25,28)(26,27)(29,32)(30,31)(33,35)(34,36)$ |
2B | $2^{18}$ | $3$ | $2$ | $18$ | $( 1, 4)( 2, 3)( 5, 7)( 6, 8)( 9,12)(10,11)(13,15)(14,16)(17,19)(18,20)(21,24)(22,23)(25,28)(26,27)(29,31)(30,32)(33,36)(34,35)$ |
2C | $2^{12},1^{12}$ | $3$ | $2$ | $12$ | $( 5, 6)( 7, 8)( 9,10)(11,12)(17,18)(19,20)(21,22)(23,24)(29,30)(31,32)(33,34)(35,36)$ |
3A1 | $3^{12}$ | $1$ | $3$ | $24$ | $( 1,27,13)( 2,28,14)( 3,25,16)( 4,26,15)( 5,32,20)( 6,31,19)( 7,30,18)( 8,29,17)( 9,33,23)(10,34,24)(11,35,21)(12,36,22)$ |
3A-1 | $3^{12}$ | $1$ | $3$ | $24$ | $( 1,13,27)( 2,14,28)( 3,16,25)( 4,15,26)( 5,20,32)( 6,19,31)( 7,18,30)( 8,17,29)( 9,23,33)(10,24,34)(11,21,35)(12,22,36)$ |
6A1 | $6^{6}$ | $1$ | $6$ | $30$ | $( 1,15,27, 4,13,26)( 2,16,28, 3,14,25)( 5,17,32, 8,20,29)( 6,18,31, 7,19,30)( 9,21,33,11,23,35)(10,22,34,12,24,36)$ |
6A-1 | $6^{6}$ | $1$ | $6$ | $30$ | $( 1,26,13, 4,27,15)( 2,25,14, 3,28,16)( 5,29,20, 8,32,17)( 6,30,19, 7,31,18)( 9,35,23,11,33,21)(10,36,24,12,34,22)$ |
6B1 | $6^{4},3^{4}$ | $3$ | $6$ | $28$ | $( 1,27,13)( 2,28,14)( 3,25,16)( 4,26,15)( 5,31,20, 6,32,19)( 7,29,18, 8,30,17)( 9,34,23,10,33,24)(11,36,21,12,35,22)$ |
6B-1 | $6^{6}$ | $3$ | $6$ | $30$ | $( 1,15,27, 4,13,26)( 2,16,28, 3,14,25)( 5,18,32, 7,20,30)( 6,17,31, 8,19,29)( 9,22,33,12,23,36)(10,21,34,11,24,35)$ |
6C1 | $6^{6}$ | $3$ | $6$ | $30$ | $( 1,26,13, 4,27,15)( 2,25,14, 3,28,16)( 5,30,20, 7,32,18)( 6,29,19, 8,31,17)( 9,36,23,12,33,22)(10,35,24,11,34,21)$ |
6C-1 | $6^{4},3^{4}$ | $3$ | $6$ | $28$ | $( 1,13,27)( 2,14,28)( 3,16,25)( 4,15,26)( 5,19,32, 6,20,31)( 7,17,30, 8,18,29)( 9,24,33,10,23,34)(11,22,35,12,21,36)$ |
9A1 | $9^{4}$ | $4$ | $9$ | $32$ | $( 1,35,32,27,21,20,13,11, 5)( 2,36,31,28,22,19,14,12, 6)( 3,34,30,25,24,18,16,10, 7)( 4,33,29,26,23,17,15, 9, 8)$ |
9A-1 | $9^{4}$ | $4$ | $9$ | $32$ | $( 1,20,35,13,32,11,27, 5,21)( 2,19,36,14,31,12,28, 6,22)( 3,18,34,16,30,10,25, 7,24)( 4,17,33,15,29, 9,26, 8,23)$ |
9A2 | $9^{4}$ | $4$ | $9$ | $32$ | $( 1,32,21,13, 5,35,27,20,11)( 2,31,22,14, 6,36,28,19,12)( 3,30,24,16, 7,34,25,18,10)( 4,29,23,15, 8,33,26,17, 9)$ |
9A-2 | $9^{4}$ | $4$ | $9$ | $32$ | $( 1,11,20,27,35, 5,13,21,32)( 2,12,19,28,36, 6,14,22,31)( 3,10,18,25,34, 7,16,24,30)( 4, 9,17,26,33, 8,15,23,29)$ |
9A4 | $9^{4}$ | $4$ | $9$ | $32$ | $( 1, 5,11,13,20,21,27,32,35)( 2, 6,12,14,19,22,28,31,36)( 3, 7,10,16,18,24,25,30,34)( 4, 8, 9,15,17,23,26,29,33)$ |
9A-4 | $9^{4}$ | $4$ | $9$ | $32$ | $( 1,21, 5,27,11,32,13,35,20)( 2,22, 6,28,12,31,14,36,19)( 3,24, 7,25,10,30,16,34,18)( 4,23, 8,26, 9,29,15,33,17)$ |
18A1 | $18^{2}$ | $4$ | $18$ | $34$ | $( 1, 8,11,15,20,23,27,29,35, 4, 5, 9,13,17,21,26,32,33)( 2, 7,12,16,19,24,28,30,36, 3, 6,10,14,18,22,25,31,34)$ |
18A-1 | $18^{2}$ | $4$ | $18$ | $34$ | $( 1,33,32,26,21,17,13, 9, 5, 4,35,29,27,23,20,15,11, 8)( 2,34,31,25,22,18,14,10, 6, 3,36,30,28,24,19,16,12, 7)$ |
18A5 | $18^{2}$ | $4$ | $18$ | $34$ | $( 1, 9,20,26,35, 8,13,23,32, 4,11,17,27,33, 5,15,21,29)( 2,10,19,25,36, 7,14,24,31, 3,12,18,28,34, 6,16,22,30)$ |
18A-5 | $18^{2}$ | $4$ | $18$ | $34$ | $( 1,29,21,15, 5,33,27,17,11, 4,32,23,13, 8,35,26,20, 9)( 2,30,22,16, 6,34,28,18,12, 3,31,24,14, 7,36,25,19,10)$ |
18A7 | $18^{2}$ | $4$ | $18$ | $34$ | $( 1,17,35,15,32, 9,27, 8,21, 4,20,33,13,29,11,26, 5,23)( 2,18,36,16,31,10,28, 7,22, 3,19,34,14,30,12,25, 6,24)$ |
18A-7 | $18^{2}$ | $4$ | $18$ | $34$ | $( 1,23, 5,26,11,29,13,33,20, 4,21, 8,27, 9,32,15,35,17)( 2,24, 6,25,12,30,14,34,19, 3,22, 7,28,10,31,16,36,18)$ |
Malle's constant $a(G)$: $1/12$
magma: ConjugacyClasses(G);
Group invariants
Order: | $72=2^{3} \cdot 3^{2}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 72.16 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 2B | 2C | 3A1 | 3A-1 | 6A1 | 6A-1 | 6B1 | 6B-1 | 6C1 | 6C-1 | 9A1 | 9A-1 | 9A2 | 9A-2 | 9A4 | 9A-4 | 18A1 | 18A-1 | 18A5 | 18A-5 | 18A7 | 18A-7 | ||
Size | 1 | 1 | 3 | 3 | 1 | 1 | 1 | 1 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
2 P | 1A | 1A | 1A | 1A | 3A-1 | 3A1 | 3A1 | 3A-1 | 3A-1 | 3A1 | 3A-1 | 3A1 | 9A2 | 9A1 | 9A4 | 9A-4 | 9A-2 | 9A-1 | 9A-2 | 9A2 | 9A-4 | 9A4 | 9A1 | 9A-1 | |
3 P | 1A | 2A | 2B | 2C | 1A | 1A | 2A | 2A | 2C | 2B | 2B | 2C | 3A1 | 3A-1 | 3A-1 | 3A1 | 3A-1 | 3A1 | 6A1 | 6A-1 | 6A-1 | 6A1 | 6A1 | 6A-1 | |
Type | |||||||||||||||||||||||||
72.16.1a | R | ||||||||||||||||||||||||
72.16.1b | R | ||||||||||||||||||||||||
72.16.1c1 | C | ||||||||||||||||||||||||
72.16.1c2 | C | ||||||||||||||||||||||||
72.16.1d1 | C | ||||||||||||||||||||||||
72.16.1d2 | C | ||||||||||||||||||||||||
72.16.1e1 | C | ||||||||||||||||||||||||
72.16.1e2 | C | ||||||||||||||||||||||||
72.16.1e3 | C | ||||||||||||||||||||||||
72.16.1e4 | C | ||||||||||||||||||||||||
72.16.1e5 | C | ||||||||||||||||||||||||
72.16.1e6 | C | ||||||||||||||||||||||||
72.16.1f1 | C | ||||||||||||||||||||||||
72.16.1f2 | C | ||||||||||||||||||||||||
72.16.1f3 | C | ||||||||||||||||||||||||
72.16.1f4 | C | ||||||||||||||||||||||||
72.16.1f5 | C | ||||||||||||||||||||||||
72.16.1f6 | C | ||||||||||||||||||||||||
72.16.3a | R | ||||||||||||||||||||||||
72.16.3b | R | ||||||||||||||||||||||||
72.16.3c1 | C | ||||||||||||||||||||||||
72.16.3c2 | C | ||||||||||||||||||||||||
72.16.3d1 | C | ||||||||||||||||||||||||
72.16.3d2 | C |
magma: CharacterTable(G);