Show commands: Magma
Group invariants
| Abstract group: | $C_6^4.S_3^2$ |
| |
| Order: | $46656=2^{6} \cdot 3^{6}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $36$ |
| |
| Transitive number $t$: | $15865$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $2$ |
| |
| Generators: | $(1,11,18,24,28,34,6,9,15,22,29,31,3,8,13,20,26,36)(2,12,17,23,27,33,5,10,16,21,30,32,4,7,14,19,25,35)$, $(3,6)(4,5)(7,33,12,35,10,32)(8,34,11,36,9,31)(13,29,16,25,18,28,14,30,15,26,17,27)(19,20)(21,24)(22,23)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $3$: $C_3$ $4$: $C_2^2$ $6$: $S_3$ x 2, $C_6$ x 3 $12$: $D_{6}$ x 2, $C_6\times C_2$ $18$: $S_3\times C_3$ x 2 $24$: $S_4$ $36$: $S_3^2$, $C_6\times S_3$ x 2 $48$: $S_4\times C_2$ $54$: $(C_9:C_3):C_2$ $72$: 12T45 $108$: $C_3^2 : D_{6} $, 12T70, 18T45 $144$: 12T83, 18T61 $192$: $V_4^2:(S_3\times C_2)$ $216$: 18T98 $324$: $((C_3^3:C_3):C_2):C_2$, 18T118, 18T122 $432$: 18T147, 18T152, 24T1328 $576$: 24T1496, 24T1497 $972$: 18T232, 18T237 $1296$: 18T299, 36T1989, 36T1999 $1728$: 24T4931, 36T2386, 36T2421 $2916$: 18T407 $3888$: 36T4609, 36T4621 $5184$: 36T5606, 36T5619, 36T5648 $11664$: 36T9112 $15552$: 36T9902, 36T9916 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 4: None
Degree 6: $D_{6}$
Degree 9: None
Degree 12: 12T108
Degree 18: 18T407
Low degree siblings
36T15864 x 6, 36T15865 x 5Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
Character table not computed
Regular extensions
Data not computed