Show commands:
Magma
magma: G := TransitiveGroup(36, 14);
Group action invariants
Degree $n$: | $36$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $14$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $C_3^2:C_4$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $36$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,16,6,30)(2,15,5,29)(3,13,8,32)(4,14,7,31)(9,27,21,19)(10,28,22,20)(11,26,24,18)(12,25,23,17)(33,35,34,36), (1,8,28,21)(2,7,27,22)(3,5,26,23)(4,6,25,24)(9,31,18,33)(10,32,17,34)(11,29,20,36)(12,30,19,35)(13,16,14,15) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $4$: $C_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: None
Degree 4: $C_4$
Degree 6: $C_3^2:C_4$ x 2
Degree 9: $C_3^2:C_4$
Degree 12: $(C_3\times C_3):C_4$ x 2
Degree 18: $C_3^2 : C_4$
Low degree siblings
6T10 x 2, 9T9, 12T17 x 2, 18T10Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{36}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{18}$ | $9$ | $2$ | $18$ | $( 1, 6)( 2, 5)( 3, 8)( 4, 7)( 9,21)(10,22)(11,24)(12,23)(13,32)(14,31)(15,29)(16,30)(17,25)(18,26)(19,27)(20,28)(33,34)(35,36)$ |
3A | $3^{12}$ | $4$ | $3$ | $24$ | $( 1,24,20)( 2,23,19)( 3,21,18)( 4,22,17)( 5,27,12)( 6,28,11)( 7,25,10)( 8,26, 9)(13,34,31)(14,33,32)(15,36,30)(16,35,29)$ |
3B | $3^{12}$ | $4$ | $3$ | $24$ | $( 1,32,12)( 2,31,11)( 3,29,10)( 4,30, 9)( 5,24,14)( 6,23,13)( 7,21,16)( 8,22,15)(17,36,26)(18,35,25)(19,34,28)(20,33,27)$ |
4A1 | $4^{9}$ | $9$ | $4$ | $27$ | $( 1,16, 6,30)( 2,15, 5,29)( 3,13, 8,32)( 4,14, 7,31)( 9,27,21,19)(10,28,22,20)(11,26,24,18)(12,25,23,17)(33,35,34,36)$ |
4A-1 | $4^{9}$ | $9$ | $4$ | $27$ | $( 1,30, 6,16)( 2,29, 5,15)( 3,32, 8,13)( 4,31, 7,14)( 9,19,21,27)(10,20,22,28)(11,18,24,26)(12,17,23,25)(33,36,34,35)$ |
Malle's constant $a(G)$: $1/18$
magma: ConjugacyClasses(G);
Group invariants
Order: | $36=2^{2} \cdot 3^{2}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 36.9 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 3A | 3B | 4A1 | 4A-1 | ||
Size | 1 | 9 | 4 | 4 | 9 | 9 | |
2 P | 1A | 1A | 3A | 3B | 2A | 2A | |
3 P | 1A | 2A | 1A | 1A | 4A-1 | 4A1 | |
Type | |||||||
36.9.1a | R | ||||||
36.9.1b | R | ||||||
36.9.1c1 | C | ||||||
36.9.1c2 | C | ||||||
36.9.4a | R | ||||||
36.9.4b | R |
magma: CharacterTable(G);