Show commands:
Magma
magma: G := TransitiveGroup(36, 13);
Group action invariants
Degree $n$: | $36$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $13$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $S_3^2$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $36$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,5,33,3,7,36)(2,6,34,4,8,35)(9,28,18,22,16,29)(10,27,17,21,15,30)(11,25,20,23,13,31)(12,26,19,24,14,32), (1,13)(2,14)(3,15)(4,16)(5,10)(6,9)(7,11)(8,12)(17,36)(18,35)(19,34)(20,33)(21,29)(22,30)(23,32)(24,31)(25,26)(27,28) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $6$: $S_3$ x 2 $12$: $D_{6}$ x 2 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 3: $S_3$ x 2
Degree 4: $C_2^2$
Degree 6: $S_3$ x 2, $D_{6}$ x 4, $S_3^2$
Degree 9: $S_3^2$
Low degree siblings
6T9, 9T8, 12T16, 18T9, 18T11 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{36}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{18}$ | $3$ | $2$ | $18$ | $( 1,26)( 2,25)( 3,28)( 4,27)( 5,29)( 6,30)( 7,32)( 8,31)( 9,12)(10,11)(13,15)(14,16)(17,20)(18,19)(21,35)(22,36)(23,34)(24,33)$ |
2B | $2^{18}$ | $3$ | $2$ | $18$ | $( 1, 6)( 2, 5)( 3, 8)( 4, 7)( 9,11)(10,12)(13,18)(14,17)(15,19)(16,20)(21,24)(22,23)(25,29)(26,30)(27,32)(28,31)(33,35)(34,36)$ |
2C | $2^{18}$ | $9$ | $2$ | $18$ | $( 1,30)( 2,29)( 3,31)( 4,32)( 5,25)( 6,26)( 7,27)( 8,28)( 9,10)(11,12)(13,19)(14,20)(15,18)(16,17)(21,33)(22,34)(23,36)(24,35)$ |
3A | $3^{12}$ | $2$ | $3$ | $24$ | $( 1, 7,33)( 2, 8,34)( 3, 5,36)( 4, 6,35)( 9,16,18)(10,15,17)(11,13,20)(12,14,19)(21,27,30)(22,28,29)(23,25,31)(24,26,32)$ |
3B | $3^{12}$ | $2$ | $3$ | $24$ | $( 1,28,14)( 2,27,13)( 3,26,16)( 4,25,15)( 5,32,18)( 6,31,17)( 7,29,19)( 8,30,20)( 9,36,24)(10,35,23)(11,34,21)(12,33,22)$ |
3C | $3^{12}$ | $4$ | $3$ | $24$ | $( 1,12,29)( 2,11,30)( 3, 9,32)( 4,10,31)( 5,16,24)( 6,15,23)( 7,14,22)( 8,13,21)(17,25,35)(18,26,36)(19,28,33)(20,27,34)$ |
6A | $6^{6}$ | $6$ | $6$ | $30$ | $( 1,32,33,26, 7,24)( 2,31,34,25, 8,23)( 3,29,36,28, 5,22)( 4,30,35,27, 6,21)( 9,14,18,12,16,19)(10,13,17,11,15,20)$ |
6B | $6^{6}$ | $6$ | $6$ | $30$ | $( 1,10,28,35,14,23)( 2, 9,27,36,13,24)( 3,11,26,34,16,21)( 4,12,25,33,15,22)( 5,20,32, 8,18,30)( 6,19,31, 7,17,29)$ |
Malle's constant $a(G)$: $1/18$
magma: ConjugacyClasses(G);
Group invariants
Order: | $36=2^{2} \cdot 3^{2}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 36.10 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 2B | 2C | 3A | 3B | 3C | 6A | 6B | ||
Size | 1 | 3 | 3 | 9 | 2 | 2 | 4 | 6 | 6 | |
2 P | 1A | 1A | 1A | 1A | 3A | 3B | 3C | 3A | 3B | |
3 P | 1A | 2A | 2B | 2C | 1A | 1A | 1A | 2A | 2B | |
Type | ||||||||||
36.10.1a | R | |||||||||
36.10.1b | R | |||||||||
36.10.1c | R | |||||||||
36.10.1d | R | |||||||||
36.10.2a | R | |||||||||
36.10.2b | R | |||||||||
36.10.2c | R | |||||||||
36.10.2d | R | |||||||||
36.10.4a | R |
magma: CharacterTable(G);