Group action invariants
Degree $n$ : | $36$ | |
Transitive number $t$ : | $13$ | |
Group : | $S_3^2$ | |
Parity: | $1$ | |
Primitive: | No | |
Nilpotency class: | $-1$ (not nilpotent) | |
Generators: | (1,5,33,3,7,36)(2,6,34,4,8,35)(9,28,18,22,16,29)(10,27,17,21,15,30)(11,25,20,23,13,31)(12,26,19,24,14,32), (1,13)(2,14)(3,15)(4,16)(5,10)(6,9)(7,11)(8,12)(17,36)(18,35)(19,34)(20,33)(21,29)(22,30)(23,32)(24,31)(25,26)(27,28) | |
$|\Aut(F/K)|$: | $36$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 6: $S_3$ x 2 12: $D_{6}$ x 2 Resolvents shown for degrees $\leq 10$
Subfields
Degree 2: $C_2$ x 3
Degree 3: $S_3$ x 2
Degree 4: $C_2^2$
Degree 6: $S_3$ x 2, $D_{6}$ x 4, $S_3^2$
Degree 9: $S_3^2$
Low degree siblings
6T9, 9T8Siblings are shown with degree $\leq 10$
Data on whether or not a number field with this Galois group has arithmetically equivalent fields has not been computed.
Conjugacy Classes
Cycle Type | Size | Order | Representative |
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $9$ | $2$ | $( 1, 2)( 3, 4)( 5,35)( 6,36)( 7,34)( 8,33)( 9,31)(10,32)(11,29)(12,30)(13,28) (14,27)(15,26)(16,25)(17,24)(18,23)(19,21)(20,22)$ |
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $3$ | $2$ | $( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,22)(10,21)(11,23)(12,24)(13,25)(14,26)(15,27) (16,28)(17,30)(18,29)(19,32)(20,31)(33,36)(34,35)$ |
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $3$ | $2$ | $( 1, 4)( 2, 3)( 5,34)( 6,33)( 7,35)( 8,36)( 9,20)(10,19)(11,18)(12,17)(13,16) (14,15)(21,32)(22,31)(23,29)(24,30)(25,28)(26,27)$ |
$ 6, 6, 6, 6, 6, 6 $ | $6$ | $6$ | $( 1, 5,33, 3, 7,36)( 2, 6,34, 4, 8,35)( 9,28,18,22,16,29)(10,27,17,21,15,30) (11,25,20,23,13,31)(12,26,19,24,14,32)$ |
$ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 7,33)( 2, 8,34)( 3, 5,36)( 4, 6,35)( 9,16,18)(10,15,17)(11,13,20) (12,14,19)(21,27,30)(22,28,29)(23,25,31)(24,26,32)$ |
$ 6, 6, 6, 6, 6, 6 $ | $6$ | $6$ | $( 1,10,28,35,14,23)( 2, 9,27,36,13,24)( 3,11,26,34,16,21)( 4,12,25,33,15,22) ( 5,20,32, 8,18,30)( 6,19,31, 7,17,29)$ |
$ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $4$ | $3$ | $( 1,12,29)( 2,11,30)( 3, 9,32)( 4,10,31)( 5,16,24)( 6,15,23)( 7,14,22) ( 8,13,21)(17,25,35)(18,26,36)(19,28,33)(20,27,34)$ |
$ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1,14,28)( 2,13,27)( 3,16,26)( 4,15,25)( 5,18,32)( 6,17,31)( 7,19,29) ( 8,20,30)( 9,24,36)(10,23,35)(11,21,34)(12,22,33)$ |
Group invariants
Order: | $36=2^{2} \cdot 3^{2}$ | |
Cyclic: | No | |
Abelian: | No | |
Solvable: | Yes | |
GAP id: | [36, 10] |
Character table: |
2 2 2 2 2 1 1 1 . 1 3 2 . 1 1 1 2 1 2 2 1a 2a 2b 2c 6a 3a 6b 3b 3c 2P 1a 1a 1a 1a 3a 3a 3c 3b 3c 3P 1a 2a 2b 2c 2b 1a 2c 1a 1a 5P 1a 2a 2b 2c 6a 3a 6b 3b 3c X.1 1 1 1 1 1 1 1 1 1 X.2 1 -1 -1 1 -1 1 1 1 1 X.3 1 -1 1 -1 1 1 -1 1 1 X.4 1 1 -1 -1 -1 1 -1 1 1 X.5 2 . . -2 . 2 1 -1 -1 X.6 2 . . 2 . 2 -1 -1 -1 X.7 2 . -2 . 1 -1 . -1 2 X.8 2 . 2 . -1 -1 . -1 2 X.9 4 . . . . -2 . 1 -2 |