Show commands: Magma
Group invariants
| Abstract group: | $C_3^7.D_6$ |
| |
| Order: | $26244=2^{2} \cdot 3^{8}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $36$ |
| |
| Transitive number $t$: | $12821$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $3$ |
| |
| Generators: | $(1,30)(2,29)(3,28)(4,25,6,27,5,26)(7,24,8,22,9,23)(10,19,11,21,12,20)(13,16,14,18,15,17)(31,34)(32,35)(33,36)$, $(1,7,2,9,3,8)(4,34)(5,35)(6,36)(10,29)(11,28)(12,30)(13,31,14,32,15,33)(16,24)(17,22)(18,23)(19,25,21,26,20,27)$, $(1,27,15,2,25,13,3,26,14)(4,29,17,6,30,18,5,28,16)(7,33,20,8,32,21,9,31,19)(10,35,23,11,36,22,12,34,24)$, $(1,10,25,35,14,23,3,12,27,34,13,24,2,11,26,36,15,22)(4,20,28,9,17,31,5,19,30,8,16,32,6,21,29,7,18,33)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $6$: $S_3$ x 14 $12$: $D_{6}$ x 14 $18$: $C_3^2:C_2$ x 13 $36$: $S_3^2$ x 13, 18T12 x 13 $54$: $(C_3^2:C_3):C_2$ x 4, 27T7 $108$: $C_3^2 : D_{6} $, 18T52 x 4, 18T58 x 13 $162$: $(C_3^3:C_3):C_2$ x 3, 18T89 x 4 $324$: 18T133 x 4, 18T134 x 3, 18T135 x 4, 36T492 x 4 $486$: 27T154, 27T165 $972$: 18T244 x 4, 18T257 x 3, 36T1539 x 4 $1458$: 18T333 $2916$: 18T422 x 3, 36T4056, 36T4125 x 4 $8748$: 36T7470 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 3: $S_3$
Degree 4: $C_2^2$
Degree 9: None
Degree 12: $D_6$
Degree 18: None
Low degree siblings
36T12821 x 26Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
Character table not computed
Regular extensions
Data not computed