Group action invariants
| Degree $n$ : | $36$ | |
| Transitive number $t$ : | $12781$ | |
| Group : | $\PSp(4,3)$ | |
| Parity: | $1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,2,4,8,16)(3,6,7,14,25)(5,11,21,32,35)(9,17,18,28,29)(10,19,30,22,33)(12,13,20,24,31)(15,27,34,36,23), (2,3,5,10,18)(4,8,15,26,30)(6,12,17,25,22)(7,13,23,24,29)(9,14,19,27,31)(11,20,16,28,34)(21,32,35,33,36) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
NoneResolvents shown for degrees $\leq 10$
Subfields
Degree 2: None
Degree 3: None
Degree 4: None
Degree 6: None
Degree 9: None
Degree 12: None
Degree 18: None
Low degree siblings
There are no siblings with degree $\leq 10$
Data on whether or not a number field with this Galois group has arithmetically equivalent fields has not been computed.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $45$ | $2$ | $( 1,33)( 2,10)( 3,35)( 5,36)( 6,27)( 7,32)(11,26)(13,18)(14,25)(15,34)(21,23) (24,29)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1 $ | $480$ | $3$ | $( 1,32,26)( 2,35,27)( 3, 6,10)( 4,19,16)( 5,14,24)( 7,11,33)( 8,30,28) (12,17,31)(13,23,34)(15,18,21)(25,29,36)$ |
| $ 6, 6, 6, 6, 3, 3, 3, 1, 1, 1 $ | $1440$ | $6$ | $( 1,11,32,33,26, 7)( 2, 6,35,10,27, 3)( 4,16,19)( 5,29,14,36,24,25)( 8,28,30) (12,31,17)(13,15,23,18,34,21)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $240$ | $3$ | $( 1,10,13)( 2,18,33)( 3,23,32)( 4, 8,12)( 6,34,26)( 7,35,21)( 9,22,20) (11,27,15)(16,28,31)(17,19,30)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $40$ | $3$ | $( 1, 2,28)( 3,21,12)( 4,23, 7)( 5,24,14)( 6,15,17)( 8,32,35)( 9,22,20) (10,18,31)(11,19,34)(13,33,16)(25,29,36)(26,27,30)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $40$ | $3$ | $( 1,28, 2)( 3,12,21)( 4, 7,23)( 5,14,24)( 6,17,15)( 8,35,32)( 9,20,22) (10,31,18)(11,34,19)(13,16,33)(25,36,29)(26,30,27)$ |
| $ 9, 9, 9, 9 $ | $2880$ | $9$ | $( 1,27,35, 2,30, 8,28,26,32)( 3, 5, 7,21,24, 4,12,14,23)( 6,29,16,15,36,13,17, 25,33)( 9,19,31,22,34,10,20,11,18)$ |
| $ 9, 9, 9, 9 $ | $2880$ | $9$ | $( 1,35,30,28,32,27, 2, 8,26)( 3, 7,24,12,23, 5,21, 4,14)( 6,16,36,17,33,29,15, 13,25)( 9,31,34,20,18,19,22,10,11)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $270$ | $2$ | $( 1, 6)( 2,24)( 3,30)( 4, 7)( 5, 9)( 8,31)(10,15)(11,34)(12,36)(14,18)(17,20) (22,32)(26,29)(28,35)$ |
| $ 4, 4, 4, 4, 4, 4, 4, 2, 2, 2, 1, 1 $ | $3240$ | $4$ | $( 1,11, 6,34)( 2,32,24,22)( 3, 5,30, 9)( 4, 8, 7,31)(10,12,15,36)(13,21) (14,17,18,20)(16,27)(19,23)(26,28,29,35)$ |
| $ 6, 6, 6, 3, 3, 3, 3, 2, 2, 2 $ | $720$ | $6$ | $( 1,17,22, 8,18,24)( 2, 6,20,32,31,14)( 3,36,26)( 4,11)( 5,28,15, 9,35,10) ( 7,34)(12,29,30)(13,16,33)(19,23)(21,25,27)$ |
| $ 6, 6, 6, 3, 3, 3, 3, 2, 2, 2 $ | $720$ | $6$ | $( 1,24,18, 8,22,17)( 2,14,31,32,20, 6)( 3,26,36)( 4,11)( 5,10,35, 9,15,28) ( 7,34)(12,30,29)(13,33,16)(19,23)(21,27,25)$ |
| $ 4, 4, 4, 4, 4, 4, 2, 2, 2, 2, 2, 2 $ | $540$ | $4$ | $( 1,10,26, 6)( 2,18,27,15)( 3,35)( 4,22)( 5,19,36,16)( 7, 9)( 8,21) (11,29,33,14)(12,32)(13,24,34,25)(17,28,31,30)(20,23)$ |
| $ 6, 6, 6, 6, 3, 3, 3, 3 $ | $360$ | $6$ | $( 1,30, 2,26,28,27)( 3,12,21)( 4, 7,23)( 5,29,24,36,14,25)( 6,31,15,10,17,18) ( 8,35,32)( 9,20,22)(11,13,19,33,34,16)$ |
| $ 6, 6, 6, 6, 3, 3, 3, 3 $ | $360$ | $6$ | $( 1,27,28,26, 2,30)( 3,21,12)( 4,23, 7)( 5,25,14,36,24,29)( 6,18,17,10,15,31) ( 8,32,35)( 9,22,20)(11,16,34,33,19,13)$ |
| $ 12, 12, 6, 6 $ | $2160$ | $12$ | $( 1,15,30,10, 2,17,26,18,28, 6,27,31)( 3, 8,12,35,21,32)( 4,20, 7,22,23, 9) ( 5,13,29,19,24,33,36,34,14,16,25,11)$ |
| $ 12, 12, 6, 6 $ | $2160$ | $12$ | $( 1,17,27,10,28,15,26,31, 2, 6,30,18)( 3,32,21,35,12, 8)( 4, 9,23,22, 7,20) ( 5,33,25,19,14,13,36,11,24,16,29,34)$ |
| $ 5, 5, 5, 5, 5, 5, 5, 1 $ | $5184$ | $5$ | $( 1,10,34,18,24)( 2,13,25,27,14)( 3,31,21,16, 4)( 5,28, 9, 8, 7) ( 6,29,26,11,33)(12,20,32,36,30)(17,23,19,22,35)$ |
| $ 6, 6, 6, 6, 3, 3, 2, 2, 1, 1 $ | $2160$ | $6$ | $( 1, 9, 7,16, 2,27)( 3,20)( 4, 5, 6,21,17,13)( 8,31,14,11,34,22) (10,23,35,36,33,29)(12,19,26)(15,25,28)(24,30)$ |
Group invariants
| Order: | $25920=2^{6} \cdot 3^{4} \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | Data not available |
| Character table: |
2 6 6 1 1 3 3 3 3 4 5 2 2 2 2 2 2 3 . . .
3 4 2 3 2 4 4 2 2 1 1 3 1 2 2 1 1 . 2 2 .
5 1 . . . . . . . . . . . . . . . . . . 1
1a 2a 3a 6a 3b 3c 6b 6c 4a 2b 3d 6d 6e 6f 12a 12b 4b 9a 9b 5a
2P 1a 1a 3a 3a 3c 3b 3b 3c 2a 1a 3d 3d 3d 3d 6c 6b 2b 9b 9a 5a
3P 1a 2a 1a 2a 1a 1a 2a 2a 4a 2b 1a 2b 2a 2a 4a 4a 4b 3c 3b 5a
5P 1a 2a 3a 6a 3c 3b 6c 6b 4a 2b 3d 6d 6f 6e 12b 12a 4b 9b 9a 1a
7P 1a 2a 3a 6a 3b 3c 6b 6c 4a 2b 3d 6d 6e 6f 12a 12b 4b 9a 9b 5a
11P 1a 2a 3a 6a 3c 3b 6c 6b 4a 2b 3d 6d 6f 6e 12b 12a 4b 9b 9a 5a
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 5 -3 2 . A /A F /F 1 1 -1 1 I -I J /J -1 -J -/J .
X.3 5 -3 2 . /A A /F F 1 1 -1 1 -I I /J J -1 -/J -J .
X.4 6 -2 . -2 -3 -3 1 1 2 2 3 -1 1 1 -1 -1 . . . 1
X.5 10 2 1 -1 B /B A /A 2 -2 1 1 -1 -1 -/J -J . J /J .
X.6 10 2 1 -1 /B B /A A 2 -2 1 1 -1 -1 -J -/J . /J J .
X.7 15 7 3 1 -3 -3 1 1 -1 3 . . -2 -2 -1 -1 1 . . .
X.8 15 -1 . 2 6 6 2 2 3 -1 3 -1 -1 -1 . . -1 . . .
X.9 20 4 -1 1 2 2 -2 -2 . 4 5 1 1 1 . . . -1 -1 .
X.10 24 8 3 -1 6 6 2 2 . . . . 2 2 . . . . . -1
X.11 30 -10 3 -1 3 3 -1 -1 -2 2 3 -1 -1 -1 1 1 . . . .
X.12 30 6 . . C /C F /F 2 2 -3 -1 I -I -J -/J . . . .
X.13 30 6 . . /C C /F F 2 2 -3 -1 -I I -/J -J . . . .
X.14 40 -8 1 1 D /D G /G . . -2 . G /G . . . J /J .
X.15 40 -8 1 1 /D D /G G . . -2 . /G G . . . /J J .
X.16 45 -3 . . E /E H /H 1 -3 . . . . J /J 1 . . .
X.17 45 -3 . . /E E /H H 1 -3 . . . . /J J 1 . . .
X.18 60 -4 -3 -1 6 6 2 2 . 4 -3 1 -1 -1 . . . . . .
X.19 64 . -2 . -8 -8 . . . . 4 . . . . . . 1 1 -1
X.20 81 9 . . . . . . -3 -3 . . . . . . -1 . . 1
A = -2*E(3)+E(3)^2
= (1-3*Sqrt(-3))/2 = -1-3b3
B = 5*E(3)+2*E(3)^2
= (-7+3*Sqrt(-3))/2 = -2+3b3
C = 6*E(3)-3*E(3)^2
= (-3+9*Sqrt(-3))/2 = 3+9b3
D = 2*E(3)+8*E(3)^2
= -5-3*Sqrt(-3) = -5-3i3
E = -9*E(3)^2
= (9+9*Sqrt(-3))/2 = 9+9b3
F = E(3)+2*E(3)^2
= (-3-Sqrt(-3))/2 = -2-b3
G = -2*E(3)^2
= 1+Sqrt(-3) = 1+i3
H = 3*E(3)
= (-3+3*Sqrt(-3))/2 = 3b3
I = E(3)-E(3)^2
= Sqrt(-3) = i3
J = E(3)
= (-1+Sqrt(-3))/2 = b3
|